#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
Welcome to the comprehensive guide for Keras quantization aware training.
This page documents various use cases and shows how to use the API for each one. Once you know which APIs you need, find the parameters and the low-level details in the
API docs.
The following use cases are covered:
For finding the APIs you need and understanding purposes, you can run but skip reading this section.
! pip uninstall -y tensorflow
! pip install -q tf-nightly
! pip install -q tensorflow-model-optimization
import tensorflow as tf
import numpy as np
import tensorflow_model_optimization as tfmot
import tempfile
input_shape = [20]
x_train = np.random.randn(1, 20).astype(np.float32)
y_train = tf.keras.utils.to_categorical(np.random.randn(1), num_classes=20)
def setup_model():
model = tf.keras.Sequential([
tf.keras.layers.Dense(20, input_shape=input_shape),
tf.keras.layers.Flatten()
])
return model
def setup_pretrained_weights():
model= setup_model()
model.compile(
loss=tf.keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy']
)
model.fit(x_train, y_train)
_, pretrained_weights = tempfile.mkstemp('.tf')
model.save_weights(pretrained_weights)
return pretrained_weights
def setup_pretrained_model():
model = setup_model()
pretrained_weights = setup_pretrained_weights()
model.load_weights(pretrained_weights)
return model
setup_model()
pretrained_weights = setup_pretrained_weights()
WARNING: Skipping tensorflow as it is not installed.
1/1 [==============================] - 0s 1000us/step - loss: 1.1921e-07 - accuracy: 0.0000e+00
##Define quantization aware model
By defining models in the following ways, there are available paths to deployment to backends listed in the overview page. By default, 8-bit quantization is used.
Note: a quantization aware model is not actually quantized. Creating a quantized model is a separate step.
Your use case:
Tips for better model accuracy:
To make the whole model aware of quantization, apply tfmot.quantization.keras.quantize_model
to the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)
quant_aware_model.summary()
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer (QuantizeLaye (None, 20) 3
_________________________________________________________________
quant_dense_2 (QuantizeWrapp (None, 20) 425
_________________________________________________________________
quant_flatten_2 (QuantizeWra (None, 20) 1
=================================================================
Total params: 429
Trainable params: 420
Non-trainable params: 9
_________________________________________________________________
Quantizing a model can have a negative effect on accuracy. You can selectively quantize layers of a model to explore the trade-off between accuracy, speed, and model size.
Your use case:
Tips for better model accuracy:
In the example below, quantize only the Dense
layers.
# Create a base model
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
# Helper function uses `quantize_annotate_layer` to annotate that only the
# Dense layers should be quantized.
def apply_quantization_to_dense(layer):
if isinstance(layer, tf.keras.layers.Dense):
return tfmot.quantization.keras.quantize_annotate_layer(layer)
return layer
# Use `tf.keras.models.clone_model` to apply `apply_quantization_to_dense`
# to the layers of the model.
annotated_model = tf.keras.models.clone_model(
base_model,
clone_function=apply_quantization_to_dense,
)
# Now that the Dense layers are annotated,
# `quantize_apply` actually makes the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
quant_aware_model.summary()
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
Model: "sequential_3"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer_1 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_dense_3 (QuantizeWrapp (None, 20) 425
_________________________________________________________________
flatten_3 (Flatten) (None, 20) 0
=================================================================
Total params: 428
Trainable params: 420
Non-trainable params: 8
_________________________________________________________________
While this example used the type of the layer to decide what to quantize, the easiest way to quantize a particular layer is to set its name
property, and look for that name in the clone_function
.
print(base_model.layers[0].name)
dense_3
This is not compatible with finetuning with quantization aware training, which is why it may be less accurate than the above examples.
Functional example
# Use `quantize_annotate_layer` to annotate that the `Dense` layer
# should be quantized.
i = tf.keras.Input(shape=(20,))
x = tfmot.quantization.keras.quantize_annotate_layer(tf.keras.layers.Dense(10))(i)
o = tf.keras.layers.Flatten()(x)
annotated_model = tf.keras.Model(inputs=i, outputs=o)
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
# For deployment purposes, the tool adds `QuantizeLayer` after `InputLayer` so that the
# quantized model can take in float inputs instead of only uint8.
quant_aware_model.summary()
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 20)] 0
_________________________________________________________________
quantize_layer_2 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_dense_4 (QuantizeWrapp (None, 10) 215
_________________________________________________________________
flatten_4 (Flatten) (None, 10) 0
=================================================================
Total params: 218
Trainable params: 210
Non-trainable params: 8
_________________________________________________________________
Sequential example
# Use `quantize_annotate_layer` to annotate that the `Dense` layer
# should be quantized.
annotated_model = tf.keras.Sequential([
tfmot.quantization.keras.quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=input_shape)),
tf.keras.layers.Flatten()
])
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
quant_aware_model.summary()
Model: "sequential_4"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer_3 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_dense_5 (QuantizeWrapp (None, 20) 425
_________________________________________________________________
flatten_5 (Flatten) (None, 20) 0
=================================================================
Total params: 428
Trainable params: 420
Non-trainable params: 8
_________________________________________________________________
Your use case: this code is only needed for the HDF5 model format (not HDF5 weights or other formats).
# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)
# Save or checkpoint the model.
_, keras_model_file = tempfile.mkstemp('.h5')
quant_aware_model.save(keras_model_file)
# `quantize_scope` is needed for deserializing HDF5 models.
with tfmot.quantization.keras.quantize_scope():
loaded_model = tf.keras.models.load_model(keras_model_file)
loaded_model.summary()
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
Model: "sequential_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer_4 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_dense_6 (QuantizeWrapp (None, 20) 425
_________________________________________________________________
quant_flatten_6 (QuantizeWra (None, 20) 1
=================================================================
Total params: 429
Trainable params: 420
Non-trainable params: 9
_________________________________________________________________
In general, reference the documentation for the deployment backend that you
will use.
This is an example for the TFLite backend.
base_model = setup_pretrained_model()
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)
# Typically you train the model here.
converter = tf.lite.TFLiteConverter.from_keras_model(quant_aware_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_tflite_model = converter.convert()
1/1 [==============================] - 0s 1000us/step - loss: 1.5351 - accuracy: 0.0000e+00
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
WARNING:tensorflow:From d:\python_virtualenv\tf2.1_gpu\lib\site-packages\tensorflow\python\keras\backend.py:465: set_learning_phase (from tensorflow.python.keras.backend) is deprecated and will be removed after 2020-10-11.
Instructions for updating:
Simply pass a True/False value to the `training` argument of the `__call__` method of your layer or model.
WARNING:tensorflow:From d:\python_virtualenv\tf2.1_gpu\lib\site-packages\tensorflow\python\training\tracking\tracking.py:105: Network.state_updates (from tensorflow.python.keras.engine.network) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
INFO:tensorflow:Assets written to: C:\Users\ADMINI~1\AppData\Local\Temp\tmp4nz2ufyn\assets
Your use case: using the following APIs means that there is no
supported path to deployment. The features are also experimental and not
subject to backward compatibility.
tfmot.quantization.keras.QuantizeConfig
tfmot.quantization.keras.quantizers.Quantizer
tfmot.quantization.keras.quantizers.LastValueQuantizer
tfmot.quantization.keras.quantizers.MovingAverageQuantizer
Experimenting requires using tfmot.quantization.keras.QuantizeConfig
, which describes how to quantize the weights, activations, and outputs of a layer.
Below is an example that defines the same QuantizeConfig
used for the Dense
layer in the API defaults.
During the forward propagation in this example, the LastValueQuantizer
returned in get_weights_and_quantizers
is called with layer.kernel
as the input, producing an output. The output replaces layer.kernel
in the original forward propagation of the Dense
layer, via the logic defined in set_quantize_weights
. The same idea applies to the activations and outputs.
LastValueQuantizer = tfmot.quantization.keras.quantizers.LastValueQuantizer
MovingAverageQuantizer = tfmot.quantization.keras.quantizers.MovingAverageQuantizer
class DefaultDenseQuantizeConfig(tfmot.quantization.keras.QuantizeConfig):
# Configure how to quantize weights.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, LastValueQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))]
# Configure how to quantize activations.
def get_activations_and_quantizers(self, layer):
return [(layer.activation, MovingAverageQuantizer(num_bits=8, symmetric=False, narrow_range=False, per_axis=False))]
def set_quantize_weights(self, layer, quantize_weights):
# Add this line for each item returned in `get_weights_and_quantizers`
# , in the same order
layer.kernel = quantize_weights[0]
def set_quantize_activations(self, layer, quantize_activations):
# Add this line for each item returned in `get_activations_and_quantizers`
# , in the same order.
layer.activation = quantize_activations[0]
# Configure how to quantize outputs (may be equivalent to activations).
def get_output_quantizers(self, layer):
return []
def get_config(self):
return {}
This example uses the DefaultDenseQuantizeConfig
to quantize the CustomLayer
.
Applying the configuration is the same across
the “Experiment with quantization” use cases.
tfmot.quantization.keras.quantize_annotate_layer
to the CustomLayer
and pass in the QuantizeConfig
.tfmot.quantization.keras.quantize_annotate_model
to continue to quantize the rest of the model with the API defaults.quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class CustomLayer(tf.keras.layers.Dense):
pass
model = quantize_annotate_model(tf.keras.Sequential([
quantize_annotate_layer(CustomLayer(20, input_shape=(20,)), DefaultDenseQuantizeConfig()),
tf.keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `DefaultDenseQuantizeConfig` with `quantize_scope`
# as well as the custom Keras layer.
with quantize_scope(
{'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,
'CustomLayer': CustomLayer}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_8"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer_6 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_custom_layer (Quantize (None, 20) 425
_________________________________________________________________
quant_flatten_9 (QuantizeWra (None, 20) 1
=================================================================
Total params: 429
Trainable params: 420
Non-trainable params: 9
_________________________________________________________________
Common mistake: quantizing the bias to fewer than 32-bits usually harms model accuracy too much.
This example modifies the Dense
layer to use 4-bits for its weights instead
of the default 8-bits. The rest of the model continues to use API defaults.
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
# Configure weights to quantize with 4-bit instead of 8-bits.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, LastValueQuantizer(num_bits=4, symmetric=True, narrow_range=False, per_axis=False))]
Applying the configuration is the same across
the “Experiment with quantization” use cases.
tfmot.quantization.keras.quantize_annotate_layer
to the Dense
layer and pass in the QuantizeConfig
.tfmot.quantization.keras.quantize_annotate_model
to continue to quantize the rest of the model with the API defaults.model = quantize_annotate_model(tf.keras.Sequential([
# Pass in modified `QuantizeConfig` to modify this Dense layer.
quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
tf.keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
{'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_9"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer_7 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_dense_9 (QuantizeWrapp (None, 20) 425
_________________________________________________________________
quant_flatten_10 (QuantizeWr (None, 20) 1
=================================================================
Total params: 429
Trainable params: 420
Non-trainable params: 9
_________________________________________________________________
This example modifies the Dense
layer to skip quantizing the activation. The rest of the model continues to use API defaults.
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
def get_activations_and_quantizers(self, layer):
# Skip quantizing activations.
return []
def set_quantize_activations(self, layer, quantize_activations):
# Empty since `get_activaations_and_quantizers` returns
# an empty list.
return
Applying the configuration is the same across
the “Experiment with quantization” use cases.
tfmot.quantization.keras.quantize_annotate_layer
to the Dense
layer and pass in the QuantizeConfig
.tfmot.quantization.keras.quantize_annotate_model
to continue to quantize the rest of the model with the API defaults.model = quantize_annotate_model(tf.keras.Sequential([
# Pass in modified `QuantizeConfig` to modify this Dense layer.
quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
tf.keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
{'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_10"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer_8 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_dense_10 (QuantizeWrap (None, 20) 423
_________________________________________________________________
quant_flatten_11 (QuantizeWr (None, 20) 1
=================================================================
Total params: 427
Trainable params: 420
Non-trainable params: 7
_________________________________________________________________
The tfmot.quantization.keras.quantizers.Quantizer
class is a callable that
can apply any algorithm to its inputs.
In this example, the inputs are the weights, and we apply the math in the
FixedRangeQuantizer
__call__ function to the weights. Instead of the original
weights values, the output of the
FixedRangeQuantizer
is now passed to whatever would have used the weights.
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
class FixedRangeQuantizer(tfmot.quantization.keras.quantizers.Quantizer):
"""Quantizer which forces outputs to be between -1 and 1."""
def build(self, tensor_shape, name, layer):
# Not needed. No new TensorFlow variables needed.
return {}
def __call__(self, inputs, training, weights, **kwargs):
return tf.keras.backend.clip(inputs, -1.0, 1.0)
def get_config(self):
# Not needed. No __init__ parameters to serialize.
return {}
class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
# Configure weights to quantize with 4-bit instead of 8-bits.
def get_weights_and_quantizers(self, layer):
# Use custom algorithm defined in `FixedRangeQuantizer` instead of default Quantizer.
return [(layer.kernel, FixedRangeQuantizer())]
Applying the configuration is the same across
the “Experiment with quantization” use cases.
tfmot.quantization.keras.quantize_annotate_layer
to the Dense
layer and pass in the QuantizeConfig
.tfmot.quantization.keras.quantize_annotate_model
to continue to quantize the rest of the model with the API defaults.model = quantize_annotate_model(tf.keras.Sequential([
# Pass in modified `QuantizeConfig` to modify this `Dense` layer.
quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
tf.keras.layers.Flatten()
]))
# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
{'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(model)
quant_aware_model.summary()
Model: "sequential_11"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
quantize_layer_9 (QuantizeLa (None, 20) 3
_________________________________________________________________
quant_dense_11 (QuantizeWrap (None, 20) 423
_________________________________________________________________
quant_flatten_12 (QuantizeWr (None, 20) 1
=================================================================
Total params: 427
Trainable params: 420
Non-trainable params: 7
_________________________________________________________________