- PHP中使用grpc服务的教程详解
Oona_01
phpandroid开发语言
这篇文章主要为大家详细介绍了PHP中使用grpc服务的教程相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下grpc是通过定义服务端和客户端的代码来实现的通信的。但是要实现通信,还是要将其方法包装为一个http请求,除非你把grpc的服务端代码放在本地的端口上。grpc是面对微服务框架而风生水起的,上次我用python编写了一个图神经网络处理的微服务,使用grpc放在我的服务
- 基于深度学习的动态场景理解
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的动态场景理解是一种通过计算机视觉技术自动分析和解释动态环境中物体、事件和交互的能力。该技术在自动驾驶、智能监控、机器人导航、增强现实等领域有着广泛应用,通过深度学习模型,特别是卷积神经网络(CNNs)、递归神经网络(RNNs)、图神经网络(GNNs)等,对复杂动态场景进行实时解读。1.动态场景理解的核心技术1.1卷积神经网络(CNNs)**卷积神经网络(CNNs)**擅长处理图像数据
- 图神经网络实战(18)——消息传播神经网络
盼小辉丶
图神经网络从入门到项目实战pytorch深度学习图神经网络
图神经网络实战(18)——消息传播神经网络0.前言1.消息传播神经网络2.实现MPNN框架小结系列链接0.前言我们已经学习了多种图神经网络(GraphNeuralNetworks,GNN)变体,包括图卷积网络(GraphConvolutionalNetwork,GCN)、图注意力网络(GraphAttentionNetworks,GAT)和GraphSAGE等。在本节中,我们将对这些变体GNN结构
- [Scene Graph] 图神经网络的核心方法——Message Passing
风中摇曳的小萝卜
SceneGraph神经网络深度学习机器学习人工智能
GNN中的MessagePassing方法解析一、GNN中是如何实现特征学习的?深度学习方法的兴起是从计算图像处理(ComputerVision)领域开始的。以卷积神经网络(CNN)为代表的方法会从邻近的像素中获取信息。这种方式对于结构化数据(structureddata)十分有效,例如,图像和体素数据。但是,CNN的处理方式对于类似图(graph)数据则并不适用。对于一个图而言,类似图像像素的邻
- 深入理解PyTorch中的MessagePassing
小桥流水---人工智能
深度学习机器学习算法人工智能pytorch人工智能python
深入理解PyTorch中的MessagePassing图神经网络(GraphNeuralNetworks,简称GNNs)在近年来已成为处理图形数据的一种强大工具,广泛应用于社交网络分析、蛋白质结构预测、知识图谱增强等多个领域。PyTorchGeometric(PyG)是基于PyTorch的一个库,专为图神经网络的研究和实现而设计。在PyG中,MessagePassing类是实现图神经网络层的核心组
- 【论文阅读】Model Stealing Attacks Against Inductive Graph Neural Networks(2021)
Bosenya12
科研学习模型窃取论文阅读图神经网络模型窃取
摘要Manyreal-worlddata(真实世界的数据)comeintheformofgraphs(以图片的形式).Graphneuralnetworks(GNNs图神经网络),anewfamilyofmachinelearning(ML)models,havebeenproposedtofullyleveragegraphdata(充分利用图数据)tobuildpowerfulapplicat
- GNN的理解难点:一种不同于传统神经网络的复杂性
小桥流水---人工智能
人工智能深度学习机器学习算法神经网络人工智能深度学习
图神经网络(GNN)已经成为深度学习领域的一颗新星,它在处理图形数据方面显示出了巨大的潜力和优势。然而,许多研究者和开发者发现GNN比传统的神经网络更难以理解和掌握。本文将探讨GNN的理解难点,以及它与传统神经网络在概念和实现上的主要差异。一、图数据的复杂性首先,GNN之所以难以理解,一个重要原因在于它处理的数据结构——图。图是一种复杂的数据结构,包含节点(node)和边(edge),这些节点和边
- 图神经网络GNN的前世今生
小桥流水---人工智能
Python程序代码深度学习人工智能神经网络人工智能深度学习
GNN图神经网络(GraphNeuralNetwork,简称GNN)已经成为处理图形结构数据的一种强大工具,广泛应用于社交网络分析、知识图谱、推荐系统等领域。在本文中,我们将深入探讨图神经网络的历史背景、关键的发展阶段以及未来可能的发展方向。一、背景介绍图(Graph)是一种数据结构,由节点(Node)和连接节点的边(Edge)组成。在许多现实世界的应用中,数据自然地呈现出图形结构,如社交网络中的
- 文献01-单细胞多组学
hlllllllhhhhh
文献-单细胞多组学python
目录【SIMBA系列教程】回顾:KDD2024|HiGPT:当大模型遇上图神经网络Nat.Biotechnol2023|利用MaxFuse整合空间和单细胞数据跨模态弱链接的特征Nat.Commun2024|"单细胞蝴蝶":基于双对齐变分自编码器的通用单细胞跨模态翻译方法 Nat.Biotech.|LINGER从单细胞多组学数据推断基因调控网络生信乐园#scRNA-seq数据分析#scATAC-se
- 金融贷款风险预测:使用图神经网络模型进行违约概率评估
从零开始学习人工智能
金融神经网络人工智能
要使用PyTorch和GNN(图神经网络)来预测金融贷款风险,并加入注意力机制,我们首先需要构建一个贷款风险预测的图数据集。然后,我们将设计一个基于注意力机制的GNN模型。以下是一个简化的代码示例,演示了如何使用PyTorch和PyTorchGeometric(一个流行的图神经网络库)来实现这一点。请注意,这只是一个起点,并且您可能需要根据您的具体需求进行调整。首先,安装必要的库:bash复制代码
- torch_scatter和torch_sparse用于处理图形数据和稀疏张量·「含有下載地址」
源代码杀手
深度学习数据处理人工智能
torch_scatter和torch_sparse是PyTorch的两个重要扩展库,用于处理图形数据和稀疏张量。它们通常与深度学习任务中的图神经网络(GNNs)相关联,这些网络涉及对图形结构的学习和推断。torch_scatter库提供了一组用于对稀疏张量执行聚合操作的函数。这些聚合操作包括对节点特征进行聚合,例如对节点邻居的特征进行求和、平均值或最大值等。这在图神经网络中是非常有用的,因为在每
- 多尺度神经网络新一代创新!精度与速度完美平衡,实现多领域应用落地
深度之眼
深度学习干货人工智能干货深度学习计算机视觉人工智能
多尺度神经网络的设计通常基于对频率原则的理解,目的是为了解决高频成分学习慢的问题。这些网络通过特殊设计,比如给高频成分加更多的权重或者将高频成分平移到低频,来提高学习效率。为了满足在不同层次上理解和处理数据的需求,多尺度神经网络包含了各种网络结构,常见的多尺度神经网络类型有:多尺度图神经网络、多尺度卷积神经网络、多尺度注意力神经网络、多尺度特征融合网络等。其关键优势在于它们能够整合来自不同尺度的信
- ConvE——二维卷积知识图谱横空出世
时光诺言
机器学习—图神经网络知识图谱人工智能python卷积神经网络
《Convolutional2DKnowledgeGraphEmbeddings》论文理解+代码复现本论文理解不再翻译原文,只写上我对于论文原生态的理解,应该会比较详细,请读者放心。一.作者为什么要提出ConvE?传统的R-GCN和DistMult的参数量过大,并且模型深度不够深,只能处理较小的知识图谱,所以作者将CNN引入到图神经网络中。二.一维卷积与二维卷积的对比2.1一维卷积当a,b特征简单
- (深度学习快速入门)图对比学习综述笔记-中文信息学报2023第37卷第5期
快乐江湖
深度学习学习笔记
文章目录引言问题定义和相关背景图定义及其类型对比学习图神经网络图分析的下游任务节点级图对比学习方法实例对比跨级别对比边级别图对比学习图级别对比学习图对比学习扩展不同类型图上的扩展结合监督信息的图对比学习图数据集介绍引言传统的图数据分析通常采用监督学习的框架,即通过人为特征提取或端到端图深度学习模型将图数据作为输入
- DeepMind加持的GNN框架正式开源,TensorFlow进入图神经网络时代
Python数据挖掘
pythonpython深度学习神经网络
谷歌在垃圾邮件检测、流量估计以及YouTube内容标签等环境中使用了一种强大的工具GNN(图神经网络)。11月18日,谷歌联合DeepMind对外开源TensorFlowGNN工具,助力流量预测、谣言和假新闻检测、疾病传播建模、物理模拟等领域的基础研究。11月18日,谷歌联合DeepMind发布了TensorFlowGNN(图神经网络)。目前,谷歌已经在诸如垃圾邮件检测、流量估计以及YouTube
- Google刚刚推出了图神经网络Tensorflow-GNN
新加坡内哥谈技术
神经网络tensorflow人工智能
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/在当今数字化的世界里,对象及其之间的复杂关系构成了无数的网络,例如交通网络、生产网络、知
- ICLR 2024时空数据(Spatial-Temporal)论文汇总
STLearner
时空数据人工智能算法机器学习数据挖掘论文阅读pytorch
ICLR(InternationalConferenceonLearningRepresentations)在5月7日-11日在奥地利维也纳举行。今年,ICLR共收到7262篇投稿,总体录用率在31%。本文总结了ICLR24有关时空数据的相关论文,如有疏漏,欢迎大家补充。其中包含时空预测,气象预测,因果推断,时空图神经网络,地理大模型等的应用。供大家学习,欢迎大家补充。1.【Spotlight】N
- 数字IC实践项目(8)—CNN加速器(ASIC_Flow;付费项目补充)
IC_Brother
数字IC经典电路设计和实践项目cnn人工智能ASIC数字IC设计
数字IC实践项目(8)—CNN加速器(ASIC_Flow;付费项目补充)更新说明项目整体框图神经网络框图Filetree项目简介和学习目的软件环境要求Area、QOR、Power&Timing报告Area&QORTiming&Power总结更新说明项目难度:⭐⭐⭐⭐⭐项目推荐度:⭐⭐⭐⭐项目推荐天数:21~35天项目简介:之前的付费项目收获了不少同学的好评,也帮助很多同学在24年的秋招中斩获了心仪
- 图神经网络与图表示学习: 从基础概念到前沿技术
cooldream2009
AI技术知识图谱神经网络学习php
目录前言1图的形式化定义和类型1.1图的形式化定义1.2图的类型2图表示学习2.1DeepWalk:融合语义相似性与图结构2.2Node2Vec:灵活调整随机游走策略2.3LINE:一阶与二阶邻接建模2.4NetMF:矩阵分解的可扩展图表示学习2.5Metapath2Vec:异构图的全面捕捉3图神经网络系列3.1基本组成和分类3.2典型模型4图神经网络预训练4.1基于生成模型的预训练4.2基于对比
- 一文梳理经典图网络模型(附新书)
科技州与数据州
作者|Chilia哥伦比亚大学nlp搜索推荐整理|NewBeeNLP图神经网络已经在NLP、CV、搜索推荐广告等领域广泛应用,今天我们就来整体梳理一些经典常用的图网络模型:DeepWalk、GCN、Graphsage、GAT!1.DeepWalk[2014]DeepWalk是来解决图里面节点embedding问题的。GraphEmbedding技术将图中的节点以低维稠密向量的形式进行表达,要求在原
- Task02 消息传递图神经网络
沫2021
参考链接:https://github.com/datawhalechina/team-learning-nlp/blob/master/GNN/Markdown%E7%89%88%E6%9C%AC/4-%E6%B6%88%E6%81%AF%E4%BC%A0%E9%80%92%E5%9B%BE%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.md一、引言消息传递范式是一种聚
- 人工智能福利站,初识人工智能,图神经网络学习,第三课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏人工智能专业知识学习二图神经网络专栏人工智能专业知识学习三图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(3)21.请解释图神经网络中的前向传播过程。22.请解释
- 人工智能福利站,初识人工智能,图神经网络学习,第二课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏人工智能专业知识学习二图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(2)11.请介绍常见的图神经网络模型,如GraphConvolutionalNetworks
- A.关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)【一】
汀、人工智能
图计算图学习图论图神经网络人工智能
图学习图神经网络算法专栏简介:主要实现图游走模型(DeepWalk、node2vec);图神经网络算法(GCN、GAT、GraphSage),部分进阶GNN模型(UniMP标签传播、ERNIESage)模型算法等,完成项目实战专栏链接:图学习图神经网络算法专栏简介:含图算法(图游走模型、图神经网络算法等)原理+项目+代码实现+比赛前人栽树后人乘凉,本专栏提供资料:快速掌握图游走模型(DeepWal
- ECE755_gnn图神经网络(附完整工程)
_max_max
GNN神经网络人工智能深度学习fpga
ECE755_gnn图神经网络(附完整工程)ECE755课程要求任务1完成:题目要求MS1代码:仿真任务二完成题目要求MS2代码:仿真总结ECE755ECE755_sp23是加拿大渥太华大学(UniversityofOttawa)计算机工程系(SchoolofElectricalEngineeringandComputerScience)的一个研究生课程,涵盖了图神经网络(GraphNeuralN
- 神经网络研究主要内容,神经网络最新研究方向
快乐的小肥熊
ai智能写作神经网络人工智能深度学习java
神经网络属于什么的研究范畴谷歌人工智能写作项目:神经网络伪原创图神经网络是什么?人工神经网络涉及什么专业BP神经网络的研究方向神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。(2)建立理论模型。根据生物原型的研究,建立神
- 人工智能福利站,初识人工智能,图神经网络学习,第一课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(1)01.什么是图神经网络(GNN)?02.图神经网络与传统神经网络的区别是什么?03.图神经网络有哪些主要的应用领域?04.请
- 大模型日报-20240204
程序无涯海
大模型资讯篇AIAIGCchatgptGPT大模型人工智能
文章目录大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」阿里全新Agent玩转手机:刷短视频自主点赞评论,还学会了跨应用操作代谢数据集上四项指标达94%~98%,西南交大团队开发多尺度图神经网络框架,助力药物研发A16Z最新AI洞察|2023年是AI视频元年,2024年还有这些难题需要解决比肩GPT-4,商汤日日新大幅升级4.0,多模态能力领先一步年龄两岁,教龄一年半:婴儿AI训
- Python GCN、GAT、MP等图神经网络学习,从入门全面概述和讲解GNN,入门到精通图神经网络
医学小达人
推荐算法人工智能图神经网络图神经网络人工智能推荐系统
1.图的分类:1.1根据边的方向性:有向图(DirectedGraph):图中的边具有方向性,表示节点之间的单向关系。例如,A指向B的边表示节点A指向节点B。无向图(UndirectedGraph):图中的边没有方向性,表示节点之间的双向关系。例如,A和B之间的边表示节点A和节点B之间存在连接关系。1.2根据边的是否具有权重:加权图(WeightedGraph):图中的边具有权重,表示节点之间的强
- 图神经网络自监督学习工具箱 - CPT-HG(一)
processor4d
文章名称【CIKM-2021】【BeijingUniversityofPostsandTelecommunications/WeChatSearchApplicationDepartment,TencentInc.】ContrastivePre-TrainingofGNNsonHeterogeneousGraphs核心要点文章旨在解决现有预训练图神经网络方法仅仅适用于同质图,忽略了异质图的特点,并
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round