社团检测(Community Detection)和聚类(Clustering)

组会汇报社团检测相关论文的时候,老师说了一句“其实这个就是聚类啊”,当时我的内心是一万个黑人脸问号脸:啊。这俩好像差不多吧,为啥有此感叹。说实话在老师问我这个问题之前,我从没想过社团检测和聚类之间会有区别,一直都是把两者傻傻分不清楚,觉得好像差不多呀。事实上,它们还是不同的。

社团检测通常是指将网络联系紧密的部分找出来,这些部分就称之为社团,那么也可以认为社团内部联系稠密,而社团之间联系稀疏 [1]。显而易见,其中有一个非常重要的点,稠密是如何定义的。不管现在想到的定义是什么,但都包含顶点,边,度,或许还有路径这些字眼,它们有一个共同的特征–网络的结构。所以,社团检测侧重于找到网络中联系紧密的部分,而经常忽略节点的属性(attributes)[2]

聚类,顾名思义是将属于同一类的目标聚在一起,通常在聚类之前我们是不知道目标有哪些类型,这也是一种典型的无监督学习方法。那么现在来想想我们熟知的聚类方法:k-means,层次聚类等。其中,最核心的一个部分是计算两个目标之间的距离(或者称为相似度),距离近则它俩是一类,距离远,那就自成一派,或者去找其它距离近的。当然,距离近只是其中一种方法,还有距离远或者怎么样,就看自己的判断。判断标准不是讨论的重点,重点是如何计算距离。欧式距离,曼哈顿距离,余弦相似度等,都是直接用目标特征构成的向量来计算的,没有考虑目标的边,度。所以,聚类侧重于找到一堆属性相似的目标,从而忽略了目标与目标之间的联系。

两者之间的关系已经很清楚啦, 社团检测和聚类存在区别,但是呢,两者又是可以结合起来的。比如,我们现在有一个网络,只知道顶点和边的情况,顶点的属性是未知的。那么在做社团检测的时候,可以将顶点与顶点之间的关系构成一个邻接矩阵,通过一系列变化或者就这个邻接矩阵而言,将每个行看作一个属性,每个列看作目标,就可以很轻松的转为聚类,用聚类的方法求解。当邻接矩阵高维时,还可以先做降维处理。所以,两者并没有完全独立,只是考虑的角度不同,可以结合使用。现在社交网络方向有一个很热门的就是用attributes来辅助进行社团检测,是对传统的社团检测和聚类方法的一种改进,两者优势互补。

参考文献:
[1]Newman M E, Girvan M. Finding and evaluating community structure in networks.[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69(2):026113.
[2]Yang J, Mcauley J, Leskovec J. Community Detection in Networks with Node Attributes[J]. 2014:1151-1156.

你可能感兴趣的:(社交网络)