Inception V4出自于论文Inception-v4, Inception-ResNet andthe Impact of Residual Connections on Learning中,从论文名字,我们就知道Inception V4是由Inception V3和ResNet改进而来。
Inception V4 里面子模块比较多,但结构比较类似,这里就不一一介绍.
InceptionV4 a子结构
InceptionV4 b子结构
Inception V4相比Inception V3进行了如下改进: 引进残差网络,但论文说引入resnet不是用来提高深度(提高准确度),只是用来提高速度的。
def Conv2d(x, nb_filter, kernel_size, padding='same', strides=(1, 1)):
x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides)(x)
x = BatchNormalization(axis=3)(x)
x = Activation('relu')(x)
return x
def Inception_a(x, nb_filter=[128, 896]):
branch0 = x
branch1 = Conv2d(x, nb_filter[0], (1, 1), padding='same', strides=(1, 1))
branch2 = Conv2d(x, nb_filter[0], (1, 1), padding='same', strides=(1, 1))
branch2 = Conv2d(branch2, nb_filter[0], (7, 1), padding='same', strides=(1, 1))
branch2 = Conv2d(branch2, nb_filter[0], (1, 7), padding='same', strides=(1, 1))
branch1_2 = concatenate([branch1, branch2], axis=3)
branch1_2 = Conv2d(branch1_2, nb_filter[1], (1, 1), padding='same', strides=(1, 1))
y = Add()([branch0, branch1_2])
y = Activation('relu')(y)
return y
def Inception_b(x, nb_filter=[192, 128, 160, 1154]):
branch0 = x
branch1 = Conv2d(x, nb_filter[0], (1, 1), padding='same', strides=(1, 1))
branch2 = Conv2d(x, nb_filter[1], (1, 1), padding='same', strides=(1, 1))
branch2 = Conv2d(branch2, nb_filter[2], (7, 1), padding='same', strides=(1, 1))
branch2 = Conv2d(branch2, nb_filter[0], (1, 7), padding='same', strides=(1, 1))
branch1_2 = concatenate([branch1, branch2], axis=3)
branch1_2 = Conv2d(branch1_2, nb_filter[3], (1, 1), padding='same', strides=(1, 1))
y = Add()([branch0, branch1_2])
y = Activation('relu')(y)
return y