Linux系统中KafKa安装和使用方法 java客户端连接kafka

kafka linux单机安装

1 下载并安装kafka

# tar zxvf kafka_2.12-1.1.0tgz 
# mv kafka_2.12-1.1.0 /usr/local/kafka
# cd /usr/local/kafka

2 启动服务

运行kafka需要使用Zookeeper,所以需要先启动一个Zookeeper服务器,如果没有Zookeeper,可以使用kafka自带打包和配置好的Zookeeper,&后台进程

# bin/zookeeper-server-start.sh config/zookeeper.properties &

然后启动kafka服务

# bin/kafka-server-start.sh config/server.properties &

3 新建一个topic

创建一个名为“test”的Topic,只有一个分区和一个备份:

# bin/kafka-topics.sh --create --zookeeper localhost:2182 --replication-factor 1 --partitions 1 --topic test

创建好之后,可以通过以下命令查看已创建的topic信息:

# bin/kafka-topics.sh --list --zookeeper localhost:2182 test

除手工创建topic外,也可以配置broker,当发布一个不存在的topic时自动创建topic。

4 发送消息

Kafka提供了一个命令行工具,可以从输入文件或者命令行中读取消息并发送给Kafka集群,每一行是一条消息。运行producer,然后在控制台输入几条消息到服务器

# bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test 
This is a message
This is another message

5 消费消息

Kafka也提供了一个消费消息的命令行工具

# bin/kafka-console-consumer.sh --zookeeper localhost:2182 --topic test --from-beginning
This is a message
This is another message

append:

Linux系统中KafKa安装和使用方法 java客户端连接kafka_第1张图片

listeners=PLAINTEXT://172.16.49.173:9092

Linux系统中KafKa安装和使用方法 java客户端连接kafka_第2张图片

java 客服端连接代码

生产者代码

import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class KafkaProducer  {
    private final Producer producer;
    public final static String TOPIC = "test";

    private KafkaProducer(){
        Properties props = new Properties();
        //此处配置的是kafka的端口
        props.put("metadata.broker.list", "10.175.118.105:9092");
        //配置value的序列化类
        props.put("serializer.class", "kafka.serializer.StringEncoder");
        //配置key的序列化类
        props.put("key.serializer.class", "kafka.serializer.StringEncoder");
        props.put("request.required.acks","-1");
        producer = new Producer(new ProducerConfig(props));
    }

    void produce() {
        int messageNo = 1000;
        final int COUNT = 10000;
        while (messageNo < COUNT) {
            String key = String.valueOf(messageNo);
            String data = "hello kafka message " + key;
            producer.send(new KeyedMessage(TOPIC, key ,data));
            System.out.println(data);
            messageNo ++;
        }
    }

    public static void main( String[] args )
    {
        new KafkaProducer().produce();
    }

}

消费者代码

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import com.huawei.hwclouds.dbs.ops.base.huatuo.diagnosis.service.impl.KafkaProducer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties;
public class KafkaConsumer {
    private final ConsumerConnector consumer;

    private KafkaConsumer() {
        Properties props = new Properties();
        //zookeeper 配置
        props.put("zookeeper.connect", "10.175.118.105:2182");

        //group 代表一个消费组
        props.put("group.id", "test-consumer-group");

        //zk连接超时
        props.put("zookeeper.session.timeout.ms", "4000");
        props.put("zookeeper.sync.time.ms", "200");
        props.put("auto.commit.interval.ms", "1000");
        props.put("auto.offset.reset", "smallest");//必须要加,如果要读旧数据
        //序列化类
        props.put("serializer.class", "kafka.serializer.StringEncoder");

        ConsumerConfig config = new ConsumerConfig(props);
        consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);
    }

    void consume() {
        Map topicCountMap = new HashMap();
        topicCountMap.put(KafkaProducer.TOPIC, new Integer(1));

        StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());
        StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties());

        Map>> consumerMap =
                consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder);
        KafkaStream stream = consumerMap.get(KafkaProducer.TOPIC).get(0);
        ConsumerIterator it = stream.iterator();
        while (it.hasNext())
            System.out.println(it.next().message());
    }

    public static void main(String[] args) {
        new KafkaConsumer().consume();
    }
}







你可能感兴趣的:(环境搭建)