ElasticSearch(以下简称ES)是一个基于Lucene构建的开源(open-source),分布式(distributed),RESTful,实时(real-time)的搜索与分析(analytics)引擎。它可以让你在浏览数据时具备非常快的速度和优秀的可扩展性。它用于全文索引、结构化数据索引、数据分析以及三者的结合。在初步学习ElasticSearch的时候,我们大部分的时候需要通过其REST API来探索ES提供的各种功能,网上有很多各种干货教程,但基本都是通过curl命令来进行演示,各种小白肯定是不太习惯的,除了输出不够美观整洁之外,也不太方便进行分类,归纳和复用。这里,结合postman一起来演示ES关于搜索的干货教程。
为了更好的使用和理解ES,没有点样例数据还是不好模拟的。这里提供了一份官网上的数据,accounts.json。如果需要的话,也可以去这个网址玩玩,它可以帮助你自定义写随机的JSON数据。
打开你的postman,输入对应的REST API,http://10.157.65.152:9200/bank/account/_bulk?pretty
选择post; body->binary; 选择文件,选中你下载好的account.json文件:
注意:
1 10.157.65.152:9200是ES得访问地址和端口
2 bank是索引的名称
3 account是类型的名称
4 索引和类型的名称在文件中如果有定义,可以省略;如果没有则必须要指定
5 _bulk是rest得命令,可以批量执行多个操作
6 pretty是将返回的信息以可读的JSON形式返回。(不过postman自带了pretty的功能)
send之后,可以很快看到结果:
然后我们可以通过另一个REST API查询:
http://10.157.65.152:9200/_cat/indices?v
插入1000条数据成功
下面的步骤很重要,在接下来的文章里面我不会在重复。
点击save:
在弹出的save窗口中,给对应的request起一个合适的名字,比如这里createBankIndex,并将其保存到对应的collection中(在这里,我已提前创建了一个ElasticSearch的collection,专门用于保存和ES相对应的REST API的操作)。如果你的ES服务器的名字会经常变,就请把10.157.65.152:9200保存为一个变量,在所有的case中使用这个变量,具体请看我之前的博文。
ES提供了两种搜索的方式:请求参数方式 和 请求体方式。
curl 'localhost:9200/bank/_search?q=*&pretty'
其中bank是查询的索引名称,q后面跟着搜索的条件:q=*表示查询所有的内容
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} }
}'
这种方式特别适合在postman里面用,因为postman里面可以使用配合使用各种变量,而且编辑起来更方便:
返回的内容大致可以如下讲解:
ES支持一种JSON格式的查询,叫做DSL,domain specific language。这门语言刚开始比较难理解,因此通过几个简单的例子开始:
下面的命令,可以搜索全部的文档:
{
"query": { "match_all": {} }
}
query定义了查询,match_all声明了查询的类型。还有其他的参数可以控制返回的结果:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"size": 1
}'
(记住,还是用postman来做客户端,绝逼比curl好用)
上面的命令返回了所有文档数据中的第一条文档。如果size不指定,那么默认返回10条。
下面的命令请求了第10-20的文档。
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"from": 10,
"size": 10
}'
下面的命令指定了文档返回的排序方式:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"sort": { "balance": { "order": "desc" } }
}'
上面了解了基本的搜索语句,下面就开始深入一些常用的DSL了。
之前的返回数据都是返回文档的所有内容,这种对于网络的开销肯定是有影响的,下面的例子就指定了返回特定的字段:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"_source": ["account_number", "balance"]
}'
再回到query,之前的查询都是查询所有的文档,并不能称之为搜索引擎。下面就通过match方式查询特定字段的特定内容,比如查询余额为20的账户信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match": { "account_number": 20 } }
}'
查询地址为mill的信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match": { "address": "mill" } }
}'
查询地址为mill或者lane的信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match": { "address": "mill lane" } }
}'
如果我们想要返回同时包含mill和lane的,可以通过match_phrase查询:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_phrase": { "address": "mill lane" } }
}'
ES提供了bool查询,可以把很多小的查询组成一个更为复杂的查询,比如查询同时包含mill和lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"must": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}'
修改bool参数,可以改为查询包含mill或者lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"should": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}'
也可以改写为must_not,排除包含mill和lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"must_not": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}'
bool查询可以同时使用must, should, must_not组成一个复杂的查询:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"must": [
{ "match": { "age": "40" } }
],
"must_not": [
{ "match": { "state": "ID" } }
]
}
}
}'
(不过这种DSL确实比较反人类)
之前说过score字段指定了文档的分数,使用查询会计算文档的分数,最后通过分数确定哪些文档更相关,返回哪些文档。
有的时候我们可能对分数不感兴趣,就可以使用filter进行过滤,它不会去计算分值,因此效率也就更高一些。
filter过滤可以嵌套在bool查询内部使用,比如想要查询在2000-3000范围内的所有文档,可以执行下面的命令:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"must": { "match_all": {} },
"filter": {
"range": {
"balance": {
"gte": 20000,
"lte": 30000
}
}
}
}
}
}'
ES除了上面介绍过的范围查询range、match_all、match、bool、filter还有很多其他的查询方式,这里就先不一一说明了。
聚合提供了用户进行分组和数理统计的能力,可以把聚合理解成SQL中的GROUP BY和分组函数。在ES中,你可以在一次搜索查询的时间内,即完成搜索操作也完成聚合操作,这样就降低了多次使用REST API造成的网络开销。
下面就是通过terms聚合的简单样例:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state"
}
}
}
}'
它类似于SQL中的下面的语句:
SELECT state, COUNT(*) FROM bank GROUP BY state ORDER BY COUNT(*) DESC
由于size设置为0,它并没有返回文档的信息,只是返回了聚合的结果。
比如统计不同账户状态下的平均余额:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}'
聚合支持嵌套,举个例子,先按范围分组,在统计不同性别的账户余额:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"size": 0,
"aggs": {
"group_by_age": {
"range": {
"field": "age",
"ranges": [
{
"from": 20,
"to": 30
},
{
"from": 30,
"to": 40
},
{
"from": 40,
"to": 50
}
]
},
"aggs": {
"group_by_gender": {
"terms": {
"field": "gender"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
}
}'
聚合可以实现很多复杂的功能,而且ES也提供了很多复杂的聚合,这里作为引导篇,也不过多介绍了。
对于基本的数据搜索大致就是上面讲述的样子,熟悉了一些常用的API,入门还是很简单的,倒是要熟练使用ES,还是需要掌握各种搜索查询的命令,以及ES内部的原理。