【中英】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第一周测验

【中英】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第一周测验


上一篇: 【课程1 - 第四周编程作业】※※※※※ 【回到目录】※※※※※下一篇: 【课程2 - 第一周编程作业】


第一周测验 - 深度学习的实践

博主注:以下全部都是只显示正确答案。

  1. 如果你有10,000,000个例子,你会如何划分训练/开发/测试集?

    • 】训练集占98% , 开发集占1% , 测试集占1% 。
  2. 开发和测试集应该:

    • 】来自同一分布。
  3. 如果你的神经网络模型似乎有很高的方差,下列哪个尝试是可能解决问题的?

    • 】添加正则化
    • 】获取更多的训练数据

    请注意: Check here.

  4. 你在一家超市的自动结帐亭工作,正在为苹果,香蕉和橘子制作分类器。 假设您的分类器在训练集上有0.5%的错误,以及开发集上有7%的错误。 以下哪项尝试是有希望改善你的分类器的分类效果的?

    • 】增加正则化参数lambda
    • 】获取更多的训练数据

    请注意: Check here.

  5. 什么是权重衰减?

    • 】正则化技术(例如L2正则化)导致梯度下降在每次迭代时权重收缩。
  6. 当你增加正则化超参数lambda时会发生什么?

    • 】权重会变得更小(接近0)
  7. 在测试时候使用dropout:

    • 】不要随机消除节点,也不要在训练中使用的计算中保留1 / keep_prob因子
  8. 将参数keep_prob从(比如说)0.5增加到0.6可能会导致以下情况

    • 】正则化效应被减弱。
    • 】使神经网络在结束时会在训练集上表现好一些。
  9. 以下哪些技术可用于减少方差(减少过拟合):

    • 】Dropout
    • 】L2 正则化
    • 】扩充数据集
  10. 为什么我们要归一化输入x?

    • 】它使成本函数更快地进行优化

Week 1 Quiz - Practical aspects of deep learning

  1. If you have 10,000,000 examples, how would you split the train/dev/test set?

    • 98% train . 1% dev . 1% test
  2. The dev and test set should:

    • Come from the same distribution
  3. If your Neural Network model seems to have high variance, what of the following would be promising things to try?

    • Add regularization
    • Get more training data

    Note: Check here.

  4. You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)

    • Increase the regularization parameter lambda
    • Get more training data

    Note: Check here.

  5. What is weight decay?

    • A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
  6. What happens when you increase the regularization hyperparameter lambda?

    • Weights are pushed toward becoming smaller (closer to 0)
  7. With the inverted dropout technique, at test time:

    • You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training
  8. Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply)

    • Reducing the regularization effect
    • Causing the neural network to end up with a lower training set error
  9. Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)

    • Dropout
    • L2 regularization
    • Data augmentation
  10. Why do we normalize the inputs x?

    • It makes the cost function faster to optimize

你可能感兴趣的:(吴恩达的课后作业)