- 数据挖掘:第二章、认识数据
initial- - -
数据挖掘数据挖掘人工智能
第二章认识数据2.1数据类型与统计汇总数据集与数据对象一个数据集由多个数据对象组成,每个数据对象代表一个实体。例如,在销售数据库中,数据对象可以是客户、商品、销售额等;在医疗数据库中,数据对象可以是患者、治疗信息等;在大学数据库中,数据对象可以是学生、教授、课程信息等。数据对象也被称为样品、示例、实例、数据点、对象、元组。数据对象所描述的属性即数据集中的列,而数据对象则是数据库中的行。属性属性是数
- 数据挖掘导论——第七章:聚类
Wis4e
数据挖掘聚类人工智能
什么是聚类?数据间的相似性和距离的测量方式有哪些?数据标准化如何进行距离计算?层次聚类的思想和流程?K-均值聚类的思想和流程?距离的计算方式如何影响聚类结果?聚类的要素,包括数据,差异性/相似性测量方式,聚类算法(标准化执行程序或流程)理解相似性和差异性的度量(p40)。Jaccard和余弦相似性度量。以下内容由AI生成:余弦相似度(CosineSimilarity)是一种衡量两个向量在方向上相似
- 数据挖掘中的数据预处理:填充与主成分分析
阿什么名字不会重复呢
数据挖掘人工智能
数据挖掘中的数据预处理:填充与主成分分析在数据挖掘中,数据预处理是非常重要的一步。现实世界中的数据通常是不完整的,包含噪声、缺失值或异常值,因此在进行模型训练或分析前,我们需要对数据进行清理和转换。本文将介绍数据预处理中的两种常见填充方法(01填充和均值填充),以及一种用于降维的技术——主成分分析(PCA)。一、数据填充数据填充是处理缺失值的常见方法。在实际场景中,数据集可能会因为各种原因出现缺失
- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- 《数据挖掘导论》 第二章数据
爱吃草莓的西瓜酱
数据挖掘导论数据挖掘
第二章数据数据类型数据质量数据预处理相似度测量数据Collectionofdataobjectsandtheirattributes特征值数值型的或者描述性的(男/女-->0/1)特征和特征值之间的区别:相同的属性可能被赋予不同的特征值,如身高的单位可能是米或者英尺不同的属性可以映射到相同的值集,如ID是无界的,age有最大值和最小值1.特征的类型Nominal(标称)Examples:IDnum
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- Python爬虫学习笔记_DAY_26_Python爬虫之requests库的安装与基本使用【Python爬虫】_requests库ip
苹果Android开发组
程序员python爬虫学习
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- DeepSeek在供热行业中的应用
杨航 AI
人工智能深度学习python机器学习算法
目录引言1.1DeepSeek技术概述1.2供暖行业业务挑战1.3DeepSeek在供暖行业的应用前景DeepSeek技术基础2.1深度学习与机器学习2.2自然语言处理(NLP)2.3图像识别与处理2.4数据挖掘与分析供暖行业应用场景3.1设备监控与维护3.1.1设备状态监控3.1.2故障预测与诊断3.1.3维护计划优化3.2能源管理与优化3.2.1能耗数据分析3.2.2热负荷预测3.2.3节能优
- kaggle竞赛(初识)
薛定谔的码*
人工智能
PART0:Kaggle介绍Kaggle是什么?答案很简单Kaggle是数据挖掘比赛火起来的,以至于中国兴起了很多很多类似的比赛;Kaggle是一个数据科学竞赛的平台,很多公司会发布一些接近真实业务的问题,吸引爱好数据科学的人来一起解决。Kaggle提供了一个介于“完美”与真实之间的过渡,问题的定义基本良好,却夹着或多或少的难点,一般没有完全成熟的解决方案。在参赛过程中与论坛上的其他参赛者互动,能
- 数据挖掘导论Pangaea-Ning Tan 读书笔记——(第一,二,三章)
小黄人的黄
数据挖掘数据挖掘
《数据挖掘导论》Pang-NingTan,MichaelSteinbach,VipinKumar读书笔记,第一章绪论数据挖掘任务预测任务描述任务分类任务回归任务聚类分析关联分析异常检测章节导读数据挖掘数据处理第2章第3章分类第4章决策树过拟合性能评估等第5章
- 数据挖掘|关联分析与Apriori算法详解
皖山文武
数据挖掘商务智能数据挖掘关联分析Apriori算法机器学习
数据挖掘|关联分析与Apriori算法1.关联分析2.关联规则相关概念2.1项目2.2事务2.3项目集2.4频繁项目集2.5支持度2.6置信度2.7提升度2.8强关联规则2.9关联规则的分类3.Apriori算法3.1Apriori算法的Python实现3.2基于mlxtend库的Apriori算法的Python实现1.关联分析关联规则分析(Association-rulesAnalysis)是数
- 关联规则算法:揭秘数据中的隐藏关系,从理论到实战
秋声studio
机器学习算法详解关联规则算法数据挖掘Apriori算法FP-Growth算法大数据优化数据预处理增量式更新
引言在当今数据驱动的时代,如何从海量数据中挖掘出有价值的信息成为了各行各业的核心挑战。关联规则算法作为数据挖掘领域的重要工具,能够帮助我们发现数据中隐藏的关联关系,从而为决策提供支持。无论是电商平台的商品推荐,还是医疗领域的疾病诊断,关联规则算法都展现出了强大的应用潜力。本文将从基础概念出发,逐步深入探讨关联规则算法的核心原理、经典算法及其优化策略。无论你是数据挖掘的初学者,还是希望进一步了解关联
- OLAP与OLTP:数据处理系统的两种核心架构
思静鱼
#Mysql-数据库架构
文章目录OLAP和OLTP的主要区别OLAP常见数据库和OLTP常见数据库OLAP是英文OnlineAnalyticalProcessing的缩写,中文称为联机分析处理。它是一种基于多维数据模型的分析处理技术,用于从不同的角度进行数据挖掘和分析,以帮助用户快速发现数据之间的相关性和趋势。OLAP技术通常涉及到预计算、缓存和查询优化等方面的技术,可用于构建在线分析系统(OLAP系统)。该系统将大量的
- 数据分析在宇宙观测中的重要性
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数据分析在宇宙观测中的重要性关键词:数据分析、宇宙观测、数据预处理、数据挖掘、数据可视化摘要:本文将探讨数据分析在宇宙观测中的重要性,从数据分析在宇宙观测中的应用背景、重要性、面临的挑战与机遇以及未来发展趋势等方面进行深入分析,旨在为读者提供一个全面而详细的了解。引言第1章:分析数据与宇宙观测的关联1.1.1数据分析在宇宙观测中的应用背景宇宙观测是研究宇宙的结构、演化、性质以及各种物理现象的科学。
- k-Shape:高效准确的聚类方法
优化算法侠Swarm-Opti
信号处理故障诊断聚类机器学习人工智能matlab数据挖掘
引言时间数据在许多学科中的扩散和无处不在,已经对时间序列的分析和挖掘产生了极大的兴趣。聚类是最流行的数据挖掘方法之一,不仅因为它的探索性,而且作为其他技术的预处理步骤或子程序。常用的有-means聚类算法。本文介绍了一种新的时间序列聚类算法k-Shape。k-Shape依赖于一个可扩展的迭代优化过程,它创建同质和良好分离的集群。作为距离度量,k-Shape使用标准化的交叉相关。基于距离度量的性质,
- 信号处理应用:电力系统中的信号处理_(9).基于电力系统信号的数据挖掘技术
kkchenkx
信号处理技术仿真模拟信号处理数据挖掘人工智能
基于电力系统信号的数据挖掘技术1.引言电力系统中的信号处理是一个重要的研究领域,涉及电力系统的监测、故障诊断、状态评估等多个方面。随着大数据和人工智能技术的发展,数据挖掘技术在电力系统中的应用越来越广泛。本节将介绍如何利用数据挖掘技术对电力系统中的信号进行处理和分析,以提高系统的可靠性和效率。2.电力系统中的信号类型在电力系统中,信号可以分为多种类型,包括:电压信号:反映电力系统的电压水平,用于检
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 知识图谱与金融——基于知识图谱的风险监控与决策支持
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介知识图谱(KG)是一种用来表示大量互相关联数据的多维网络结构,它通过三元组(subject-predicate-object)的方式来表述实体之间的关系。它经常被用在文本分析、数据挖掘、推荐系统等领域。而随着金融行业对海量信息数据的需求越来越高,知识图谱技术也越来越受到重视。实际上,知识图谱已经成为构建和处理金融知识的重要工具之一。本文将探讨知识图谱在金融中的应
- 数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析
艾派森
数据挖掘实战合集python人工智能数据挖掘信息可视化数据分析
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- 【数据仓库与数据挖掘基础】第一章 概论/基础知识
精神病不行计算机不上班
数据仓库与数据挖掘基础数据挖掘数据仓库
知识点复习:事务(关于事务的一些知识点可以点这里)一、数据仓库的一些基本的知识1.从数据库到数据仓库1.1数据库用于事务处理1.1.1定义:事务处理是指对数据库中数据的操作,这些操作通常包括插入、更新、删除和查询等。事务处理的核心是确保数据的一致性和完整性。事务的定义:事务是数据库操作的基本单位,包含一组逻辑上相关的操作。事务要么全部成功,要么全部失败。ACID特性:原子性(Atomicity):
- 特征缩放:统一量纲,提高模型性能
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
特征缩放:统一量纲,提高模型性能1.背景介绍在机器学习和数据挖掘领域,我们经常会遇到不同特征之间量纲差异很大的情况。比如,一个数据集中可能包含年龄(0-100)、收入(0-100000)、身高(150-200cm)等不同尺度的特征。这种量纲不统一会给许多机器学习算法(如梯度下降)带来问题,导致收敛速度慢、模型性能差等。特征缩放(FeatureScaling)就是一种用于解决这个问题的常用数据预处理
- 80| Python可视化篇 —— Matplotlib数据可视化
小刘要努力。
Python教程系列专栏可视化数据分析python
文章目录Matplotlib和数据可视化安装matplotlib绘制折线图绘制散点图绘制正弦曲线绘制直方图使用Pygal绘制矢量图3D图Matplotlib和数据可视化数据的处理、分析和可视化已经成为Python近年来最为重要的应用领域之一,其中数据的可视化指的是将数据呈现为漂亮的统计图表,然后进一步发现数据中包含的规律以及隐藏的信息。数据可视化又跟数据挖掘和大数据分析紧密相关,而这些领域以及当下
- 社会科学市场博弈和价格预测之时间序列挖掘(Datawhale AI 夏令营)
会飞的Anthony
人工智能人工智能
深入理解赛题——探索性数据分析首先,我们先介绍一下什么是EDA:探索性数据分析(ExploratoryDataAnalysis,EDA)是一组数据分析技术,旨在总结其主要特征,通常通过可视化手段来实现。EDA的目标是通过数据的统计摘要和图形展示来发现数据的结构、异常值、模式、趋势、关系以及变量之间的相互作用。为什么进行EDA?在现在的数据挖掘类比赛中,模型和方法选择空间往往很小,同时存在不少自动机
- 企业数据挖掘平台×DeepSeek强强联合,多种应用场景适用
泰迪智能科技01
DeepSeek数据挖掘人工智能
企业数据挖掘建模平台简单易用,可提供代码方便定制,全面培训服务+丰富模型参考+专业建模人员支持服务。在科技飞速发展的今天,人工智能领域的每一次突破都如同投入湖面的巨石,激起层层波澜。DeepSeek作为大模型领域的璀璨新星,以其卓越的技术实力和创新的应用模式,成为了全球瞩目的焦点,也为高校教育、企业发展都带来了前所未有的机遇与变革。当数据挖掘平台×DeepSeek强强联合,又会碰撞出怎样的火花呢?
- 2024年Python最新蓝桥杯 基础练习全解 答案+解析 共17题 python,三年经验Python开发面经总结
2401_84139963
程序员python学习面试
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- 【数据挖掘】Pandas之DataFrame
dundunmm
数据挖掘机器学习数据挖掘大数据人工智能pandas机器学习
在Pandas中,DataFrame提供了丰富的数据操作功能,包括查询、编辑、分类和汇总。1.数据查询(Filtering&Querying)1.1按索引或列名查询importpandasaspddata={"ID":[101,102,103,104,105],"Name":["Alice","Bob","Charlie","David","Eva"],"Age":[25,30,35,40,28]
- 学生行为习惯画像可视分析平台
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
学生行为习惯,画像分析,可视化,机器学习,数据挖掘,教育科技1.背景介绍随着教育信息化进程的不断加速,海量教育数据正在被生成和积累。这些数据蕴含着丰富的学生行为信息,例如学习时间、学习内容、学习方式、学习效果等。有效挖掘和分析这些数据,能够帮助教育工作者深入了解学生的学习习惯和行为模式,从而为个性化教学、精准指导和学习效果提升提供重要支撑。然而,传统的教育数据分析方法往往局限于简单的统计描述,难以
- 用python制作简单的小游戏,用python设计一个小游戏
w12130826
pygamepython开发语言人工智能
本篇文章给大家谈谈python编写小游戏详细教程,以及用python制作简单的小游戏,希望对各位有所帮助,不要忘了收藏本站喔。Python为什么能这么火热?Python相对于其他语言来说比较简单,即使是零基础的普通人也能很快的掌握,在其他方面比如,处于灰色界的爬虫,要VIP的视频,小说,歌,没有爬虫解决不了的;数据挖掘及分析,淘宝就是例子,想开个淘宝店,需要获取相关商品信息,这时数据分析就能解决等
- python和java的优缺点-java有哪些python没有的优点?
weixin_37988176
Java和Python都是目前最火的后台语言。Java的使用时间更久,更成熟,Python语言更年轻,更便捷。两者各有各的优势:Python的优势:1.学起来简单,开发效率高,同样的功能用Java开发可能需要写200条代码,但是用Python只需要30~50条;2.在大数据挖掘方面有突出优势,是大数据分析首选的编程语言,Python可以让开发人员轻松表达概念,程序员维护和更新代码库更容易;3.Py
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&