可重入锁就是当前持有锁的线程能够多次获取该锁,无需等待
ReentrantLock锁主要包括一个Sync的内部抽象类以及Sync抽象类的两个实现类
AQS的父类AbstractOwnableSynchronizer(后面简称AOS),AOS主要提供一个exclusiveOwnerThread属性,用于关联当前持有该锁的线程。另外、Sync的两个实现类分别是NonfairSync和FairSync
假设目前有三个线程Thread1、Thread2、Thread3同时去竞争锁,如果结果是Thread1获取了锁,Thread2和Thread3进入了等待队列,那么他们的样子如下:
AQS的等待队列基于一个双向链表实现的,HEAD节点不关联线程,后面两个节点分别关联Thread2和Thread3,他们将会按照先后顺序被串联在这个队列上。这个时候如果后面再有线程进来的话将会被当做队列的TAIL。
1、入队列
当这三个线程同时去竞争锁的时候发生了什么
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
三个线程同时进来,他们会首先会通过CAS去修改state的状态,如果修改成功,那么竞争成功,因此这个时候三个线程只有一个CAS成功,其他两个线程失败,也就是tryAcquire返回false。
接下来,addWaiter会把将当前线程关联的EXCLUSIVE类型的节点入队列:
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
如果队尾节点不为null,则说明队列中已经有线程在等待了,那么直接入队尾。对于我们举的例子,这边的逻辑应该是走enq,也就是开始队尾是null,其实这个时候整个队列都是null的
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
如果Thread2和Thread3同时进入了enq,同时t==null,则进行CAS操作对队列进行初始化,这个时候只有一个线程能够成功,然后他们继续进入循环,第二次都进入了else代码块,这个时候又要进行CAS操作,将自己放在队尾,因此这个时候又是只有一个线程成功,我们假设是Thread2成功,哈哈,Thread2开心的返回了,Thread3失落的再进行下一次的循环,最终入队列成功,返回自己。
2、并发问题
基于上面两段代码,他们是如何实现不进行加锁,当有多个线程,或者说很多很多的线程同时执行的时候,怎么能保证最终他们都能够乖乖的入队列而不会出现并发问题的呢?这也是这部分代码的经典之处,多线程竞争,热点、单点在队列尾部,多个线程都通过【CAS+死循环】这个free-lock黄金搭档来对队列进行修改,每次能够保证只有一个成功,如果失败下次重试,如果是N个线程,那么每个线程最多loop N次,最终都能够成功。
3、挂起等待的线程
节点入队列之后会继续发生什么呢?那就要看看acquireQueued是怎么实现的了,为保证文章整洁,代码我就不贴了,同志们自行查阅,我们还是以上面的例子来看看,Thread2和Thread3已经被放入队列了,进入acquireQueued之后:
对于Thread2来说,它的prev指向HEAD,因此会首先再尝试获取锁一次,如果失败,则会将HEAD的waitStatus值为SIGNAL,下次循环的时候再去尝试获取锁,如果还是失败,且这个时候prev节点的waitStatus已经是SIGNAL,则这个时候线程会被通过LockSupport挂起。
对于Thread3来说,它的prev指向Thread2,因此直接看看Thread2对应的节点的waitStatus是否为SIGNAL,如果不是则将它设置为SIGNAL,再给自己一次去看看自己有没有资格获取锁,如果Thread2还是挡在前面,且它的waitStatus是SIGNAL,则将自己挂起。
如果Thread1死死的握住锁不放,那么Thread2和Thread3现在的状态就是挂起状态啦,而且HEAD,以及Thread的waitStatus都是SIGNAL,尽管他们在整个过程中曾经数次去尝试获取锁,但是都失败了,失败了不能死循环呀,所以就被挂起了。当前状态如下:
4、锁释放-等待线程唤起
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
首先,Thread1会修改AQS的state状态,加入之前是1,则变为0,注意这个时候对于非公平锁来说是个很好的插入机会,举个例子,如果锁是公平锁,这个时候来了Thread4,那么这个锁将会被Thread4抢去。。。
我们继续走常规路线来分析,当Thread1修改完状态了,判断队列是否为null,以及队头的waitStatus是否为0,如果waitStatus为0,说明队列无等待线程,按照我们的例子来说,队头的waitStatus为SIGNAL=-1,因此这个时候要通知队列的等待线程,可以来拿锁啦,这也是unparkSuccessor做的事情,unparkSuccessor主要做三件事情:
将队头的waitStatus设置为0.
通过从队列尾部向队列头部移动,找到最后一个waitStatus<=0的那个节点,也就是离队头最近的没有被cancelled的那个节点,队头这个时候指向这个节点。
将这个节点唤醒,其实这个时候Thread1已经出队列了。
还记得线程在哪里挂起的么,上面说过了,在acquireQueued里面,我没有贴代码,自己去看哦。这里我们也大概能理解AQS的这个队列为什么叫FIFO队列了,因此每次唤醒仅仅唤醒队头等待线程,让队头等待线程先出。
package com;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
public class MyLock implements Lock {
private Helper helper = new Helper();
private class Helper extends AbstractQueuedSynchronizer {
@Override
protected boolean tryAcquire(int arg) {
// 第一个线程进来,可以获取锁
// 第二个线程进来,无法获取锁,返回false
Thread thread = Thread.currentThread();
// 判断是否为第一个线程进来
int state = getState();
if (state == 0) {
if (compareAndSetState(0, arg)) {// 如果当前状态值等于预期值,则以原子方式将同步状态设置为给定的更新值
// 设置当前线程
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
} else if(getExclusiveOwnerThread() == thread) { // 允许重入锁,当前线程和当前保存的线程是同一个线程
setState(state + 1);
return true;
}
return false;
}
/***
* 释放锁
此方法总是由正在执行释放的线程调用。
*/
@Override
protected boolean tryRelease(int arg) {
// 锁的获取和释放肯定是一一对应的,那么调用此方法的线程一定是当前线程
if (Thread.currentThread() != getExclusiveOwnerThread()) {
throw new RuntimeException();
}
boolean flag = false;
int state = getState() -arg;
if (state == 0) {// 当前锁的状态正确
setExclusiveOwnerThread(null);
flag = true;
}
setState(state);
return flag;
}
protected Condition newCondition() {
return new ConditionObject();
}
}
@Override
public void lock() {
// 独占锁
helper.acquire(1);
}
@Override
public void lockInterruptibly() throws InterruptedException {
// 可中断
helper.acquireInterruptibly(1);
}
@Override
public boolean tryLock() {
return helper.tryAcquire(1);
}
@Override
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
return helper.tryAcquireNanos(1, unit.toNanos(time));
}
@Override
public void unlock() {
helper.release(1);
}
@Override
public Condition newCondition() {
return helper.newCondition();
}
}