- 人脸识别算法赋能园区无人超市安防升级
智驱力人工智能
算法人工智能边缘计算人脸识别智慧园区智慧工地智慧煤矿
人脸识别算法赋能园区无人超市安防升级正文在园区无人超市的运营管理中,传统安防手段依赖人工巡检或基础监控设备,存在响应滞后、误报率高、环境适应性差等问题。本文从技术背景、实现路径、功能优势及应用场景四个维度,阐述如何通过人脸识别检测、人员入侵算法及疲劳检测算法的协同应用,构建高效、精准的智能安防体系。一、技术背景:视觉分析算法的核心支撑人脸识别算法基于深度学习的卷积神经网络(CNN)模型,通过提取面
- OpenCV边缘填充方式详解
慕婉0307
opencv基础opencv计算机视觉人工智能
一、边缘填充概述在图像处理中,边缘填充(BorderPadding)是一项基础而重要的技术,特别是在进行卷积操作(如滤波、边缘检测等)时,处理图像边缘像素需要用到周围的像素值。由于图像边缘的像素没有完整的邻域,因此需要通过某种方式对图像边界进行扩展。边缘填充的主要应用场景包括:图像滤波(如高斯滤波、中值滤波等)卷积神经网络(CNN)中的卷积层形态学操作(如膨胀、腐蚀)图像特征提取二、OpenCV中
- Day41 Python打卡训练营
知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层2.Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorc
- 深度学习在人脸识别中的应用及Python实现
loop_syntax648
机器学习-深度学习
人脸识别是一种通过计算机技术识别和验证人脸的方法,近年来深度学习在人脸识别领域取得了显著的进展。深度学习模型能够学习和提取人脸图像中的高级特征,从而实现准确的人脸识别。本文将介绍深度学习在人脸识别中的应用,并提供Python实现的源代码。深度学习模型通常基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)进行人脸识别。CNN是一种专门用于处理图像和视觉数据的神经网络模型
- 60天python训练营打卡day41
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY41简单CNN知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层2.Flatten->Dense(withDropout,可选)->De
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 第五章 卷积神经网络(CNN)
AI拉呱
机器学习深度学习实例讲解与分析
第五章卷积神经网络(CNN)5.1卷积神经网络的组成层在卷积神经网络中,有3种最主要的层:卷积运算层池化层全连接层一个完整的神经网络就是由这三种层叠加组成的。结构示例拿CIFAR-10数据集举例,一个典型的该数据集上的卷积神经网络分类器应该有[INPUT-CONV-RELU-POOL-FC]的结构,INPUT[32*32*3]包含原始图片数据中的全部像素,长宽都是32,有RGB3个颜色通道。CON
- 探秘 Drain3:一款高效日志异常检测神器
尚舰舸Elsie
探秘Drain3:一款高效日志异常检测神器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的日志异常检测系统,由LogPAI团队开发并开源。它旨在帮助运维人员和数据科学家快速发现系统日志中的异常行为,从而及时预测和处理潜在的问题,提升系统的稳定性和安全性。技术分析Drain3的核心技术是利用一维卷积神经网络(1DConvolutionalNeuralNet
- 微算法科技(NASDAQ:MLGO)采用量子卷积神经网络(QCNN),检测区块链中的DDoS攻击
MicroTech2025
量子计算区块链
随着区块链技术的广泛应用,其安全性问题日益凸显。DDoS攻击作为一种常见的网络攻击手段,也对区块链网络构成了严重威胁。传统的检测方法在应对复杂多变的DDoS攻击时存在一定局限性,而量子计算的发展为解决这一问题带来了新的契机。微算法科技(NASDAQ:MLGO)深入研究量子卷积神经网络(QCNN),并对其在检测区块链中的DDoS攻击方面进行了一系列创新改进。量子卷积神经网络(QCNN)是结合了量子计
- 道路点云分割+边界提取+中心线方法总结
asdbhkasgb
相关论文深度学习计算机视觉人工智能算法3d
1.FastLIDAR-basedRoadDetectionUsingFullyConvolutionalNeuralNetworks2017流程点云数据转换为俯视图图像从激光雷达获取的点云数据是无结构的,因此需要先将其转换为适合全卷积神经网络(FCN)处理的格式。具体来说,作者在激光雷达的XY平面上创建一个网格,并将点云中的每个点分配到相应的网格单元。对每个网格单元计算一些基础统计数据,例如:平
- 基于深度学习的智能图像语义分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python分类音视频机器学习sklearn
前言图像语义分割是计算机视觉领域中的一个重要任务,其目标是将图像中的每个像素分配到预定义的语义类别中。这一技术在自动驾驶、医学影像分析、机器人视觉等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像语义分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像语义分割系统的原理、实现方法以及实际应用案例。一、图像语义分割的基本概念1.1什么是图像语义分割?图
- 基于深度学习的特征映射模块(FMS)实现与分析
RockLiu@805
深度学习模块机器视觉深度学习人工智能
基于深度学习的特征映射模块(FMS)实现与分析引言在现代计算机视觉任务中,特征提取是至关重要的一步。传统的CNN虽然在很多任务上表现良好,但面对复杂图像信息时仍显得力不从心。为了解决这一问题,研究者们不断探索新的方法和技术,以更高效地捕捉和表示图像中的特征。今天,我将带大家深入探索一个结合了深度学习与小波变换的特征映射模块(FMS)。该模块不仅利用了传统的卷积神经网络(CNN),还引入了离散小波变
- 探秘卷积神经网络(CNN):从原理到实战的深度解析
LNL13
cnn人工智能神经网络
在图像识别、视频处理等领域,卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)如同一位“超级侦探”,能够精准捕捉图像中的关键信息,实现对目标的快速识别与分析。从医疗影像诊断到自动驾驶中的路况感知,CNN凭借独特的架构设计和强大的特征提取能力,成为深度学习领域的中流砥柱。接下来,让我们深入探索CNN的奥秘。一、CNN的诞生背景与核心优势传统的神经网络,如多层感知机(ML
- 搜索引擎蜘蛛的智能抓取策略:技术解构与动态博弈的深层逻辑
我爱学习558
搜索引擎蜘蛛2搜索引擎pythonjavascript
搜索引擎蜘蛛的抓取过程远非简单的页面下载,而是一场融合了计算机科学、博弈论和信息经济学的复杂系统工程。其技术实现中暗藏着搜索引擎对网络空间认知范式的根本性转变。###一、多模态解析引擎的量子化演进现代蜘蛛的解析引擎已突破传统HTML解析的局限,形成多模态感知架构:**1.时空感知型解析器**-**视觉权重建模**:通过卷积神经网络(CNN)分析页面视觉热区,将首屏内容权重提升37%-**交互深度预
- Python实现简单的深度学习实践
master_chenchengg
pythonpythonPythonpython开发IT
Python实现简单的深度学习实践Python:通往深度学习世界的钥匙动手搭建你的第一个神经网络模型从零开始,用Python解析MNIST手写数字识别超越基础:使用Keras快速构建卷积神经网络实战演练:训练一个简单的图像分类器Python:通往深度学习世界的钥匙在当今这个数据驱动的时代,Python无疑成为了打开深度学习大门的金钥匙。它不仅语法简洁、易于上手,而且拥有强大的社区支持和丰富的库资源
- 八种常见的神经网络介绍
EdmundXjs
技术专栏神经网络人工智能深度学习
在深度学习的世界里,各种神经网络模型层出不穷,每一种都有其独特的魅力和优势。今天,以下是八种常见的神经网络模型及其特点介绍,让我们来看看它们是如何在人工智能领域大放异彩的。概述(八大神经网络)卷积神经网络(CNN):适用于图像、音频等网格数据处理。通过卷积层提取局部特征,池化层降维,广泛用于图像分类、目标检测。特点是参数共享和权值的局部连接,减少了模型复杂度。循环神经网络(RNN):擅长处理序
- 基于CNN卷积神经网络识别汉字合集-视频介绍下自取
no_work
深度学习cnn人工智能神经网络
内容包括:含ShuffleNet等多个模型的手写中文汉字识别摄像头版109含ShuffleNet等多个模型的手写中文汉字识别摄像头版_哔哩哔哩_bilibili本代码用的python语言,pytorch深度学习框架运行,环境的安装可以参考博客:深度学习环境安装教程-anaconda-python-pytorch_动手学习深度学习的环境安装-CSDN博客代码总共分成三个部分,01py文件是划分数据集
- 卷积神经网络CNN
一、图像概念图像是人类视觉的基础,是自然景物的客观反映,是人类认识世界和人类本身的重要源泉。简单讲:图像是由像素点组成的,每个像素点的取值范围在[0,255]。像素值越接近于0,颜色越暗,接近于黑色;像素值越接近255,颜色越亮,接近于白色。在计算机中,按照颜色和灰度的多少可以将图像分为四种基本类型:①二值图像②灰度图像③索引图像④真彩色RGB图像(深度学习中使用较多)。图像类型通道数像素值范围主
- Incremental Transformer Structure EnhancedImage Inpainting with Masking Positional Encoding笔记
毕设做完了吗?
transformer笔记深度学习
摘要:近年来,图像修复取得了重大进展。然而,恢复具有生动纹理和合理结构的损坏图像仍然具有挑战性。由于卷积神经网络(CNN)的感受野有限,一些特定方法只能处理常规纹理,同时失去整体结构。另一方面,基于注意力的模型可以更好地学习结构恢复的长程依赖性,但它们受到大图像尺寸推理的大量计算的限制。为了解决这些问题,我们建议利用一个额外的结构恢复器来促进图像的增量修复。所提出的模型在固定的低分辨率草图空间中,
- 基于PyQt5与CNN的枸杞/沙棘果图像分类系统
#define TUNE false
人工智能深度学习qtcnn
摘要本文介绍了一套基于PyTorch和PyQt5的枸杞与沙棘果实识别系统。该系统采用卷积神经网络模型,实现了90%以上的识别准确率,响应时间小于500ms,显著提升了传统人工分拣效率。系统具备以下特点:1)可视化交互界面,包含分类显示区、控制面板和参数调节功能;2)支持置信度阈值动态调整(50%-95%);3)提供单图/批量图像处理能力。文章详细解析了系统架构、核心模块代码及功能实现,同时指出了当
- Flask与计算机视觉:图像识别API开发
后端开发笔记
flask计算机视觉pythonai
Flask与计算机视觉:图像识别API开发关键词:Flask框架、计算机视觉、图像识别、API开发、卷积神经网络(CNN)摘要:本文将带你探索如何用轻量级Web框架Flask搭建一个图像识别API。我们会从基础概念讲起,用“快递站”“图片翻译官”等生活化比喻解释技术原理,结合Python代码实战演示从模型加载到接口响应的完整流程,最后讨论实际应用场景和未来趋势。无论你是Web开发新手还是计算机视觉
- 【图像处理入门】11. 深度学习初探:从CNN到GAN的视觉智能之旅
小米玄戒Andrew
图像处理:从入门到专家深度学习图像处理cnn计算机视觉CVGAN
摘要深度学习为图像处理注入了革命性动力。本文将系统讲解卷积神经网络(CNN)的核心原理,通过PyTorch实现图像分类实战;深入解析迁移学习的高效应用策略,利用预训练模型提升自定义任务性能;最后揭开生成对抗网络(GAN)的神秘面纱,展示图像生成与增强的前沿技术。结合代码案例与可视化分析,帮助读者跨越传统算法与深度学习的技术鸿沟。一、卷积神经网络(CNN)基础与实战1.CNN的核心组件与工作原理1.
- 深度学习“炼丹”实战:用LeNet驯服MNIST“神兽”
AI妈妈手把手
深度学习人工智能LeNetcnn模型训练学习笔记MNIST
宝子们,在深度学习的神秘世界里,咱们就像一群“炼丹师”,而模型就是咱们精心炼制的“丹药”,数据集则是炼丹的“原材料”。今天,咱们就用经典的LeNet卷积神经网络模型,在MNIST手写数字数据集这个“原材料宝库”里,炼制出一颗能精准识别数字的“神奇丹药”!LeNet网络结构回顾,见:深度学习图像分类六大经典网络结构全解析一、MNIST数据集:炼丹的“珍贵原料”MNIST数据集可是深度学习界的“老牌明
- 基于深度学习的智能图像分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python机器学习tensorflow神经网络sklearn
前言图像分割是计算机视觉领域中的一个核心任务,其目标是将图像划分为多个有意义的区域或对象。图像分割在医学影像分析、自动驾驶、安防监控等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像分割系统的原理、实现方法以及实际应用案例。一、图像分割的基本概念1.1什么是图像分割?图像分割是一种将图像划分为多个互
- 基于深度学习的智能图像风格转换系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能机器学习机器人神经网络pythonsklearn
前言图像风格转换是一种将一张图像的内容与另一张图像的风格相结合的技术,广泛应用于艺术创作、图像编辑和视觉特效等领域。近年来,深度学习技术,尤其是卷积神经网络(CNN)和生成对抗网络(GAN),为图像风格转换带来了革命性的进展。本文将详细介绍基于深度学习的智能图像风格转换系统的原理、实现方法以及实际应用案例。一、图像风格转换的基本概念1.1什么是图像风格转换?图像风格转换是一种图像处理技术,其目标是
- 【Python】深度学习-VGG19网络
宅男很神经
python开发语言
第一章:VGG的哲学根基——一场由简约与深度引领的革命在卷积神经网络(ConvolutionalNeuralNetwork,CNN)的璀璨星河中,VGG(VisualGeometryGroup)网络家族的出现,并非一次技术上的偶然突变,而是一场深刻的、影响至今的哲学革命。它并非以奇诡的结构或复杂的数学技巧取胜,恰恰相反,它以一种近乎禁欲主义的简约和对“深度”这一核心要素的极致追求,为后续网络架构的
- VGG-19(Visual Geometry Group)模型
VGG-19是由牛津大学视觉几何组和GoogleDeepMind的研究人员在2014年提出的一个非常经典的深度卷积神经网络模型。一核心结构(1)深度:模型名称中的"19"指的是模型拥有19层带有权重的层(通常指:16个卷积层+3个全连接层=19。如果严格数带参数的层,输入层和ReLU激活层不计入深度统计)。(2)简单范式:VGG系列模型(包括VGG-11,VGG-13,VGG-16,VGG-19)
- pytorch都有哪些神经网络,都哪些情况使用这些神经网络
zhiSiBuYu0517
pythonpytorch神经网络人工智能
PyTorch提供了多种神经网络类型,适用于不同的场景,以下是一些常见的神经网络及其适用情况:前馈神经网络(FeedforwardNeuralNetwork,FNN)结构:由输入层、若干隐藏层和输出层组成,每一层都连接到下一层。适用场景:用于分类和回归问题,适合结构化数据或特征明显的数据集。卷积神经网络(ConvolutionalNeuralNetwork,CNN)结构:包含卷积层和池化层,通过卷
- [论文阅读]PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
颜笑晏晏
论文阅读
1.摘要双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调(overshoot),这限制了现有两个分支模型的准确性的提高。在本文中,我们在卷积神经网络(CNN)和比例积分微分(PID)控制器之间架起了桥梁,并揭示了双分支网络只是一个比例积分(PI)控制器,当然也会存在类似的超调问题。为了解决这个问题,
- 深度学习 backbone,neck,head网络关键组成
SLAM必须dunk
深度学习人工智能
在深度学习,尤其是计算机视觉任务中,backbone(骨干网络),neck(颈部),head(头部)是网络的关键组成部分,各自承担了不同的功能:1,总署:Backbone,译作骨干网络,主要指用于特征提取的,已在大型数据集(例如ImageNet|COCO等)上完成预训练,拥有预训练参数的卷积神经网络,例如:ResNet-50、Darknet53等;Head,译作检测头,主要用于预测目标的种类和位置
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio