TCGA-16.任意基因的任意分组比较

花花写于2020-01-29 这个仍然是TCGA课程里的内容,但图是箱线图的美化版,可以用在任何领域,不局限于TCGA。

0.输入数据

rm(list=ls())
load(file = "for_boxplot.Rdata")

这里面有三个数据:
expr和meta是miRNA的表达矩阵和临床信息,由GDC下载整理得到。
mut是突变信息,读取maf得到的数据框筛选了几列得到。
在生信星球公众号回复“box”即可获得。也可参照前面的笔记自己获得。

1.比较任意miRNA在tumor和normal样本中的表达量

这个只需要表达矩阵,以hsa-mir-143为例画图,可替换为其他任意miRNA。

expr[1:4,1:4]
#>              TCGA-A3-3307-01A-01T-0860-13 TCGA-A3-3308-01A-02R-1324-13
#> hsa-let-7a-1                         5056                        14503
#> hsa-let-7a-2                        10323                        29238
#> hsa-let-7a-3                         5429                        14738
#> hsa-let-7b                          17908                        37062
#>              TCGA-A3-3311-01A-02R-1324-13 TCGA-A3-3313-01A-02R-1324-13
#> hsa-let-7a-1                         8147                         7138
#> hsa-let-7a-2                        16325                        14356
#> hsa-let-7a-3                         8249                         7002
#> hsa-let-7b                          28984                         6909
group_list=ifelse(as.numeric(substr(colnames(expr),14,15)) < 10,'tumor','normal')
table(group_list)
#> group_list
#> normal  tumor 
#>     71    522

library(ggstatsplot)
dat = data.frame(gene = expr["hsa-mir-143",],
                 group = group_list)
ggbetweenstats(data = dat, x = group,  y = gene,title = "hsa-mir-143")
#> Note: Shapiro-Wilk Normality Test for gene: p-value = < 0.001
#> 
#> Note: Bartlett's test for homogeneity of variances for factor group: p-value = < 0.001
#> 
TCGA-16.任意基因的任意分组比较_第1张图片

2.任意miRNA在任意两个分组中的表达量对比

只要肿瘤样本,522个,只要是可以根据临床信息查到或得到的分组,例如生死、人种、阶段,都可以拿来做分组。

需要注意调整样本顺序,一一对应。

expf = expr[,as.numeric(substr(colnames(expr),14,15)) < 10]
library(stringr)
x1=str_sub(colnames(expf),1,12)
x2=str_to_upper(meta$patient.bcr_patient_barcode)

table(x2 %in% x1)
#> 
#> FALSE  TRUE 
#>    21   516
table(x1 %in% x2)
#> 
#> TRUE 
#>  522
length(unique(x1))
#> [1] 516

#发现一个问题,样本的前12位代表病人的编号,列名是有重复的,为了一对一关系,去重复走起

expf = expf[,!duplicated(str_sub(colnames(expf),1,12))]
x1=str_sub(colnames(expf),1,12)
x2=str_to_upper(meta$patient.bcr_patient_barcode)
table(x2 %in% x1)
#> 
#> FALSE  TRUE 
#>    21   516
meta = meta[x2 %in% x1 ,]
#按照生死、人种、阶段分组看看
table(meta$patient.vital_status)
#> 
#> alive  dead 
#>   358   158
table(meta$patient.stage_event.pathologic_stage)
#> 
#>   stage i  stage ii stage iii  stage iv 
#>       254        55       124        83
table(meta$patient.race)
#> 
#>                     asian black or african american 
#>                         8                        56 
#>                     white 
#>                       445

dat = data.frame(gene = expf["hsa-mir-143",],
                 vital_status = meta$patient.vital_status,
                 stage = meta$patient.stage_event.pathologic_stage,
                 race = meta$patient.race)
p1 = ggbetweenstats(data = dat, x = vital_status,  y = gene,title = "hsa-mir-143")
#> Note: Shapiro-Wilk Normality Test for gene: p-value = < 0.001
#> 
#> Note: Bartlett's test for homogeneity of variances for factor vital_status: p-value = 0.101
#> 
p2 = ggbetweenstats(data = dat, x = stage,  y = gene,title = "hsa-mir-143")
#> Note: 95% CI for effect size estimate was computed with 100 bootstrap samples.
#> 
#> Note: Shapiro-Wilk Normality Test for gene: p-value = < 0.001
#> 
#> Note: Bartlett's test for homogeneity of variances for factor stage: p-value = < 0.001
#> 
p3 = ggbetweenstats(data = dat, x = race,  y = gene,title = "hsa-mir-143")
#> Note: 95% CI for effect size estimate was computed with 100 bootstrap samples.
#> 
#> Note: Shapiro-Wilk Normality Test for gene: p-value = < 0.001
#> 
#> Note: Bartlett's test for homogeneity of variances for factor race: p-value = 0.001
#> 
library(patchwork)
p1+p2+p3
TCGA-16.任意基因的任意分组比较_第2张图片

3.根据某个基因是否突变分组比较某miRNA的表达量

dim(expf)
#> [1] 552 516
head(mut)
#>    Hugo_Symbol Chromosome Start_Position         Tumor_Sample_Barcode
#> 1:    HNRNPCL2       chr1       13115853 TCGA-G6-A8L7-01A-11D-A36X-10
#> 2:       ERMAP       chr1       42842993 TCGA-G6-A8L7-01A-11D-A36X-10
#> 3:        FAAH       chr1       46394349 TCGA-G6-A8L7-01A-11D-A36X-10
#> 4:       EPS15       chr1       51448116 TCGA-G6-A8L7-01A-11D-A36X-10
#> 5:      HMGCS2       chr1      119764248 TCGA-G6-A8L7-01A-11D-A36X-10
#> 6:      NOS1AP       chr1      162367063 TCGA-G6-A8L7-01A-11D-A36X-10
#>        t_vaf            pos
#> 1: 0.2148148  chr1:13115853
#> 2: 0.1650165  chr1:42842993
#> 3: 0.3114754  chr1:46394349
#> 4: 0.1677852  chr1:51448116
#> 5: 0.2539683 chr1:119764248
#> 6: 0.2098765 chr1:162367063
length(unique(str_sub(mut$Tumor_Sample_Barcode,1,12)))
#> [1] 336
table(x1 %in% unique(str_sub(mut$Tumor_Sample_Barcode,1,12)))
#> 
#> FALSE  TRUE 
#>   185   331
#522个样本中有331个有突变信息记录,将这些样本对应的表达矩阵取出来。
expm = expf[,x1 %in% unique(str_sub(mut$Tumor_Sample_Barcode,1,12))]
library(dplyr)

VHL_mut = mut  %>% 
  filter(Hugo_Symbol=='VHL')  %>%   
  as.data.frame()  %>% 
  pull(Tumor_Sample_Barcode)   %>%  
  as.character()   %>%   
  substr(1,12)

#false 对应的是未突变样本,true是突变样本

tail(rownames(expm))
#> [1] "hsa-mir-944" "hsa-mir-95"  "hsa-mir-96"  "hsa-mir-98"  "hsa-mir-99a"
#> [6] "hsa-mir-99b"
dat=data.frame(gene=log2(expm['hsa-mir-98',]),
               mut= substr(colnames(expm),1,12) %in% VHL_mut)

ggbetweenstats(data = dat, x = mut,  y = gene)
#> Note: Shapiro-Wilk Normality Test for gene: p-value = 0.159
#> 
#> Note: Bartlett's test for homogeneity of variances for factor mut: p-value = 0.031
#> 
TCGA-16.任意基因的任意分组比较_第3张图片

可以看到,自己分组后挑选任意基因,p值可能大可能小,如果不想直接做可视化,也可先批量计算p值,然后挑选p<0.05的基因进行可视化。


res.aov <- aov(gene ~ as.factor(mut), data = dat)
summary(res.aov)
#>                 Df Sum Sq Mean Sq F value Pr(>F)
#> as.factor(mut)   1   1.81   1.809   2.035  0.155
#> Residuals      329 292.47   0.889
TukeyHSD(res.aov)
#>   Tukey multiple comparisons of means
#>     95% family-wise confidence level
#> 
#> Fit: aov(formula = gene ~ as.factor(mut), data = dat)
#> 
#> $`as.factor(mut)`
#>                  diff        lwr        upr     p adj
#> TRUE-FALSE -0.1479028 -0.3518444 0.05603875 0.1546273
summary(res.aov)[[1]]$`Pr(>F)`[1]
#> [1] 0.1546273

这样的会,批量计算也很简单了,用apply即可。

微信公众号生信星球同步更新我的文章,欢迎大家扫码关注!


我们有为生信初学者准备的学习小组, 点击查看◀️
想要参加我的线上线下课程,也可加好友咨询
如果需要提问,请先看 生信星球答疑公告

你可能感兴趣的:(TCGA-16.任意基因的任意分组比较)