- Spark 性能优化 (三):RBO 与 CBO
LevenBigData
spark性能调优spark性能优化ajax
1.RBO的核心概念在ApacheSpark的查询优化过程中,规则优化(Rule-BasedOptimization,RBO)是Catalyst优化器的一个关键组成部分。它主要依赖于一组固定的规则进行优化,而不是基于统计信息(如CBO-Cost-BasedOptimization)。RBO主要通过一系列逻辑规则(LogicalRules)和物理规则(PhysicalRules)来转换和优化查询计划
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- java获取hive表所有字段,Hive Sql从表中动态获取空列计数
拾亿年
java获取hive表所有字段
我正在使用datastaxspark集成和sparkSQLthrift服务器,它为我提供了一个HiveSQL接口来查询Cassandra中的表.我的数据库中的表是动态创建的,我想要做的是仅根据表名在表的每列中获取空值的计数.我可以使用describedatabase.table获取列名,但在hiveSQL中,如何在另一个为所有列计数null的select查询中使用其输出.更新1:使用Dudu的解决
- PySpark查询Dataframe中包含乱码的数据记录的方法
weixin_30777913
python大数据spark
首先,用PySpark获取Dataframe中所有非ASCII字符,找到其中的非乱码字符。frompyspark.sqlimportSparkSessionfrompyspark.sql.functionsimportcol,concat_ws,explode,split,coalesce,litfrompyspark.sql.typesimportStringTypespark=SparkSes
- spark streaming基础操作
天选之子123
大数据spark大数据分布式
sparkstreaming基础操作一、什么是sparkstreamingSparkStreaming用于流式数据的处理。SparkStreaming使用离散化流(discretized作为抽象表示,叫作DStream。DStream是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为RDD存在,而DStream是由这些RDD所组成的序列(因此得名“离散化”)。简单来说,DStre
- flink实时集成利器 - apache seatunnel - 核心架构详解
24k小善
flinkapache架构
SeaTunnel(原名Waterdrop)是一个分布式、高性能、易扩展的数据集成平台,专注于大数据领域的数据同步、数据迁移和数据转换。它支持多种数据源和数据目标,并可以与ApacheFlink、Spark等计算引擎集成。以下是SeaTunnel的核心架构详解:SeaTunnel核心架构SeaTunnel的架构设计分为以下几个核心模块:1.数据源(Source)功能:负责从外部系统读取数据。支持的
- DS缩写乱争:当小海豚撞上AI顶流,技术圈也逃不过“撞名”修罗场
数据库
DS缩写风云:从“小海豚”到“深度求索”的魔幻现实曾几何时,技术圈提到DS,人们脑海中浮现的是一只灵动的“小海豚”——ApacheDolphinScheduler(简称DS)。这个2019年诞生的分布式任务调度系统,凭借可视化DAG界面、多租户支持和对Hadoop/Spark生态的深度集成,一度是大数据工程师的“梦中情工”。然而,命运的齿轮在2025年初突然加速转动:杭州AI公司DeepSeek(
- 如何在Java中实现高效的分布式计算框架:从Hadoop到Spark
省赚客app开发者
javahadoopspark
如何在Java中实现高效的分布式计算框架:从Hadoop到Spark大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式计算框架,重点介绍Hadoop和Spark这两个在大数据处理领域中广泛使用的技术。一、Hadoop:基础分布式计算框架Hadoop是一个开源的分布式计算框架,最早由Apache开发,旨在处理海量数据。它的核心
- Spark源码分析
数据年轮
Sparkspark源码spark大数据源码分析
过程描述:1.通过Shell脚本启动Master,Master类继承Actor类,通过ActorySystem创建并启动。2.通过Shell脚本启动Worker,Worker类继承Actor类,通过ActorySystem创建并启动。3.Worker通过Akka或者Netty发送消息向Master注册并汇报自己的资源信息(内存以及CPU核数等),以后就是定时汇报,保持心跳。4.Master接受消息
- Spark 源码 | 脚本分析总结
董可伦
spark源码脚本
前言最初是想学习一下Spark提交流程的源码,比如SparkOnYarn、Standalone。之前只是通过网上总结的文章大概了解整体的提交流程,但是每个文章描述的又不太一样,弄不清楚到底哪个说的准确,比如Client和CLuster模式的区别,Driver到底是干啥的,是如何定义的,为了彻底弄清楚这些疑问,所以决定学习一下相关的源码。因为不管是服务启动还是应用程序启动,都是通过脚本提交的,所以我
- Spark性能调优-----常规性能调优(一)最优资源配置
weidajiangjiang
spark性能调优常规资源配置
1.1.1常规性能调优一:最优资源配置Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示:代码清单2-1标准Spark提交脚本/usr/opt/modules/spark/bin
- Spark性能调优系列:Spark资源模型以及调优
Mr Cao
大数据sparkSpark性能调优
Spark资源模型Spark内存模型Spark在一个Executor中的内存分为三块,execution内存、storage内存、other内存。execution内存是执行内存,join、aggregate都在这部分中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO,Map过程也是在这个内存中执行的。(0.25)storage内存是存储broadcast,cache
- spark 性能调优 (一):执行计划
LevenBigData
spark性能调优spark大数据
在Spark中,explain函数用于提供数据框(DataFrame)或SQL查询的逻辑计划和物理执行计划的详细解释。它可以帮助开发者理解Spark是如何执行查询的,包括优化过程、转换步骤以及它将采用的物理执行策略。1.逻辑计划(LogicalPlan)逻辑计划代表了Spark将应用于处理数据的抽象操作序列。它是基于用户提供的DataFrameAPI或SQL查询,经过优化前的中间表示。未优化的逻辑
- spark技术基础知识
24k小善
spark服务器
1.Spark的宽窄依赖划分Q:Spark中如何划分宽依赖和窄依赖?A:窄依赖:父RDD的每个分区最多被一个子RDD的分区依赖(如map、filter),不会触发shuffle。宽依赖:父RDD的每个分区可能被多个子RDD的分区依赖(如groupByKey、reduceByKey),会触发shuffle。Q:宽依赖和窄依赖对性能的影响是什么?A:窄依赖:计算效率高,数据不需要跨节点传输。宽依赖:涉
- Spark图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析sparkspringboot爬虫
Spark图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图书
- 计算机毕业设计hadoop+spark+hive新能源汽车数据分析可视化大屏 汽车推荐系统 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习 大数据毕业设计 深度学习 知识图谱 人工智能
qq+593186283
hadoop大数据人工智能
(1)设计目的本次设计一个基于Hive的新能源汽车数据仓管理系统。企业管理员登录系统后可以在汽车保养时,根据这些汽车内置传感器传回的数据分析其故障原因,以便维修人员更加及时准确处理相关的故障问题。或者对这些数据分析之后向车主进行预警提示车主注意保养汽车,以提高汽车行驶的安全系数。(2)设计要求利用Flume进行分布式的日志数据采集,Kafka实现高吞吐量的数据传输,DateX进行数据清洗、转换和整
- 【spark】【在YARN上运行Spark】【Running Spark on YARN】
资源存储库
spark
目录RunningSparkonYARN在YARN上运行SparkSecurity安全LaunchingSparkonYARN在YARN上启动SparkAddingOtherJARs添加其他JARPreparations筹备工作Configuration配置DebuggingyourApplication调试应用程序SparkProperties【Spark属性】Availablepatterns
- 在Jupyter Notebook中进行大数据分析:集成Apache Spark
范范0825
jupyter数据分析apache
在JupyterNotebook中进行大数据分析:集成ApacheSpark介绍JupyterNotebook是一款广泛使用的数据科学工具,结合ApacheSpark后,能够处理和分析大规模数据。ApacheSpark是一个快速的统一分析引擎,支持大数据处理和分布式计算。本教程将详细介绍如何在JupyterNotebook中集成和使用Spark进行大数据分析。前提条件基本的Python编程知识基本
- 知识图谱智能应用系统:数据分析与挖掘技术文档
光芒再现0394
知识图谱数据分析人工智能
一、概述在知识图谱智能应用系统中,数据分析与挖掘模块是实现知识发现和智能应用的核心环节。该模块负责处理和分析来自数据采集与预处理模块的结构化和半结构化数据,提取有价值的知识,并将其转化为可用于知识图谱构建和应用的三元组数据。本技术文档详细介绍了数据分析与挖掘模块中使用到的关键技术,包括SparkML、StanfordNLP、JNA、Jena、Python调用以及定时调度。二、技术栈介绍(一)Spa
- spark性能优化点(超详解!!!珍藏版!!!)
深漠大侠
sparkspark性能优化
spark性能优化点分配更多的资源1.1分配哪些资源1.2在哪里可以设置这些资源1.3参数调节到多大,算是最大分配更多的资源:它是性能优化调优的王道,就是增加和分配更多的资源,这对于性能和速度上的提升是显而易见的,基本上,在一定范围之内,增加资源与性能的提升,是成正比的;写完了一个复杂的spark作业之后,进行性能调优的时候,首先第一步,就是要来调节最优的资源配置;在这个基础之上,如果说你的spa
- spark1.6.0分布式安装
问道9527
sparkspark分布式集群
1.概述本文是对spark1.6.0分布式集群的安装的一个详细说明,旨在帮助相关人员按照本说明能够快速搭建并使用spark集群。2.安装环境本安装说明的示例环境部署如下:IP外网IPhostname备注10.47.110.38120.27.153.137iZ237654q6qZMaster、Slaver10.24.35.51114.55.56.190iZ23pd81xqaZSlaver10.45.
- spark安装与环境配置
Handoking
大数据进阶中sparkpython安装
1.安装spark官网http://spark.apache.org/downloads.html考虑到spark之后要结合hadoop一起使用,所以下载和已经安装hadoop版本均兼容的spark(首先安装好hadoop选择伪分布式配置(因为我是单机运行,有集群的朋友查看集群环境搭建的方法。)```)![这里写图片描述](https://img-blog.csdn.net/20180718201
- 3.5寸圈圈机移植阿木实验室P230旗舰款,纯视觉定位
永不炸机
无人机prometheusROSPX4c++
1、使用3.5寸圈圈机架Bee352、使用淘宝微空家四合一电调、PX4飞控、MTF-01光流3、使用淘宝华虎家的数传4、使用阿木家的Allspark1NX作为机载电脑,在Ubuntu18.04下运行ros和阿木实验室的Prometheus来控制无人机5、电池根据电调和飞控,使用4S3300mah的18650电池,也可使用6S的18650之类的硬包电池6、飞控固件用的1.14.0,参数只修改定位和m
- spark on yarn-cluster在生产环境 部署 spark 任务, 同时支持读取外部可配置化文件
千里风雪
sparklinux运维spark大数据hadoop
SparkYarn-cluster在生产环境部署,同时支持参数可配置化方法在Spark中,有Yarn-Client和Yarn-Cluster两种模式可以运行在Yarn上,通常Yarn-cluster适用于生产环境,而Yarn-Cluster更适用于交互,调试模式提示:前提条件有hadoop集群,可以在yarn上运行Job文章目录SparkYarn-cluster在生产环境部署,同时支持参数可配置化
- spark-pyspark-standalone部署模式全过程
哈哈哈哈q
spark大数据分布式
声明:1.参考视频b站黑马程序员视频,极力推荐这个视频,侵权删除https://www.bilibili.com/video/BV1Jq4y1z7VP/?spm_id_from=333.337.search-card.all.click&vd_source=3ae466b20a9e8eabdaa10e84c99758492.第一次配置,仅作为个人记录使用。3.参考黑马程序员standalone配置
- 大数据集群Spark-on-Yarn+Paddle深度学习模型部署
jqtree
#大数据开发大数据sparkpaddle
背景:因数据量较大,想要将模型部署到大数据集群上进行计算。测试环境:Spark版本:2.4.0Python版本:2.6.XPaddlePaddle版本:2.4.2处理器:CPU过程记录:1.python运行环境准备本人使用Anaconda管理虚拟环境。关于虚拟环境的准备:模型需要什么第三方库就安装哪些库,最后可以使用conda-pack打包虚拟环境。1.1conda-pack打包记录在虚拟环境里下
- 类库与框架、在window(pycharm)搭建pyspark库,连接Linux。
哈哈哈哈q
+sparkspark大数据分布式
类库:一堆别人写好的代码,可以直接导入使用,pandas框架:可以独立运行,软件产品,如sparkpandas用于:小规模数据集spark用于:大规模数据集pysparkpython的运行类库,内置了完全的sparkapi,可以通过pyspark类库类库来编写spark应用程序。并将其提交到spark集群中运行。搭建。。很麻烦,本地需要pycharm专业版,利用shh连接Linux中的ana库。测
- 案例1.spark和flink分别实现作业配置动态更新案例
wguangliang
Sparkflinkspark大数据分布式flinketl工程师
目录目录一、背景二、解决1.方法1:sparkbroadcast广播变量a.思路b.案例①需求②数据③代码2.方法2:flinkRichSourceFunctiona.思路b.案例①需求②数据③代码④测试验证测试1测试2测试3一、背景在实时作业(如SparkStreaming、Flink等流处理作业)中,通过外部配置管理系统动态修改配置,有以下优点:1.无需重启作业,实现配置热更新好处:实时作业通
- .getClass.getClassLoader.getResourceAsStream的方式加载文件,总是为null加载不到数据
抛砖者
idea
记录一个问题,我在用如下的代码加载配置文件的时候,总是加载不到数据,文件位置的对的SparkSessionBase.getClass.getClassLoader.getResourceAsStream(“spark-conf.properties”)解决这个问题的思路第一肯定是要去确定下,target目录下有没有这个文件,一般情况下八层是因为因为在编译的时候没有把配置文件给加载进来导致的,所以就
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理