利用Python进行数据分析——pandas入门
- 基于NumPy建立的
from pandas importSeries,DataFrame
,import pandas as pd
一、两种数据结构
1.Series
类似于Python的字典,有索引和值
创建Series
#不指定索引,默认创建0-N
In [54]: obj = Series([1,2,3,4,5])
In [55]: obj
Out[55]:
0 1
1 2
2 3
3 4
4 5
dtype: int64
#指定索引
In [56]: obj1 = Series([1,2,3,4,5],index=['a','b','c','d','e'])
In [57]: obj1
Out[57]:
a 1
b 2
c 3
d 4
e 5
dtype: int64
#将Python中的字典转换为Series
In [63]: dic = {'a':1,'b':2,'c':3}
In [64]: obj2 = Series(dic)
In [65]: obj2
Out[65]:
a 1
b 2
c 3
dtype: int64
对Series进行数组运算(根据布尔型数组进行过滤、标量乘法、应用函数等)依旧会保留索引和值之间的对应关系。
对应index的值找不到就用NAN表示,且在算数运算中会自动补齐数据,不存在用NAN
2.DataFrame
DataFrame是一个表格型的数据结构,既有行索引也有列索引。
创建DataFrame
#传进去一个等长列表组成的字典
IIn [75]: data = {'name':['nadech','bob'],'age':[23,25],'sex':['male','female']}
In [76]: DataFrame(data)
Out[76]:
age name sex
0 23 nadech male
1 25 bob female
#指定列的顺序
In [77]: DataFrame(data,columns=['sex','name','age'])
Out[77]:
sex name age
0 male nadech 23
1 female bob 25
# 嵌套字典创建DataFrame
DataFrame的操作
#获取某一列
In [82]: frame['age'] /frame.age
Out[82]:
0 23
1 25
Name: age, dtype: int64
#赋值
In [86]: frame2
Out[86]:
age sex name grade
0 23 male nadech NaN
1 25 female bob NaN
In [87]: frame2['grade']=12
In [88]: frame2
Out[88]:
age sex name grade
0 23 male nadech 12
1 25 female bob 12
Index对象
In [14]: index = frame.index
In [15]: index
Out[15]: RangeIndex(start=0, stop=3, step=1)
# index 对象不可修改
In [16]: index[0]=3
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
二、基本功能
1.Series和DataFrame的重新索引
#Series
In [25]: obj = Series(['nadech','aguilera','irenieee'],index=['a','b','c'])
In [26]: obj
Out[26]:
a nadech
b aguilera
c irenieee
dtype: object
In [27]: obj.reindex(['c','b','a'])
Out[27]:
c irenieee
b aguilera
a nadech
dtype: object
#####DataFrame
In [21]: frame
Out[21]:
one two three
a 0 1 2
b 3 4 5
c 6 7 8
#直接传进去的列表是对行的重新索引
In [22]: frame.reindex(['c','b','a'])
Out[22]:
one two three
c 6 7 8
b 3 4 5
a 0 1 2
#对列的重新索引需要参数columns
In [24]: frame.reindex(columns=['three','two','one'])
Out[24]:
three two one
a 2 1 0
b 5 4 3
c 8 7 6
2.删除指定轴上的项
#Series
In [28]: obj.drop('c')
Out[28]:
a nadech
b aguilera
dtype: object
In [30]: obj.drop(['b','a'])
Out[30]:
c irenieee
dtype: object
#####DataFrame
frame删除行索引直接删除,列索引删除需要指定axis=1
In [39]: frame
Out[39]:
one two three
a 0 1 2
b 3 4 5
c 6 7 8
In [40]: frame.drop('a')
Out[40]:
one two three
b 3 4 5
c 6 7 8
In [41]: frame.drop('one',axis=1)
Out[41]:
two three
a 1 2
b 4 5
c 7 8
3.索引、选取和过滤
Series索引
In [8]: obj
Out[8]:
a 0
b 1
c 2
d 3
dtype: int32
In [9]: obj['a']
Out[9]: 0
In [10]: obj[0]
Out[10]: 0
#注意利用标签切片和index 0-N是不同的
In [11]: obj[2:3]
Out[11]:
c 2
dtype: int32
In [12]: obj['c':'d']
Out[12]:
c 2
d 3
dtype: int32
DataFrame索引
#索取frame的列
In [24]: frame
Out[24]:
one two three four
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
In [25]: frame['one']
Out[25]:
a 0
b 4
c 8
d 12
Name: one, dtype: int32
In [26]: frame[['one','two']]
Out[26]:
one two
a 0 1
b 4 5
c 8 9
d 12 13
#索取frame的行,标签索引
In [33]: frame.ix['a']
Out[33]:
one 0
two 1
three 2
four 3
Name: a, dtype: int32
In [31]: frame.ix[['a','b']]
Out[31]:
one two three four
a 0 1 2 3
b 4 5 6 7
#同时选取行和列
In [35]: frame.ix[['a','b'],['one','two']]
Out[35]:
one two
a 0 1
b 4 5
4.算数运算和数据对齐
#当存在不同的索引对计算时,会产生并集,和NAN,通过fill_value 可以传入参数
- add()
- sub()
- div()
- mul()
5.Series和DataFrame的运算
#series的索引会匹配到dataframe的列,然后向下广播
In [46]: frame
Out[46]:
one two three four
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
In [47]: obj = frame.ix['a']
In [48]: obj
Out[48]:
one 0
two 1
three 2
four 3
Name: a, dtype: int32
In [49]: frame - obj
Out[49]:
one two three four
a 0 0 0 0
b 4 4 4 4
c 8 8 8 8
d 12 12 12 12
#可以指定series匹配到dataframe的列(即index)然后向右广播,即沿着列广播
In [51]: frame
Out[51]:
one two three four
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
In [52]: obj2 = Series(np.arange(4),index=['a','b','c','d'])
In [53]: obj2
Out[53]:
a 0
b 1
c 2
d 3
dtype: int32
In [54]: frame.sub(obj2,axis=0) #dataframe的行用0、列用1
Out[54]:
one two three four
a 0 1 2 3
b 3 4 5 6
c 6 7 8 9
d 9 10 11 12
5.排序
#按轴上的索引排序
#Series
In [6]: obj
Out[6]:
a 0
c 1
b 2
d 3
In [8]: obj.sort_index()
Out[8]:
a 0
b 2
c 1
d 3
dtype: int32
#DataFrame
frame.sort_index()
frame.sort_index(axis=1)
6.obj.index.is_unique
可以用来判断index是否唯一
三、汇总和计算描述统计
描述和汇总统计
- count 非Na值的数量
- describe 针对Series或各DataFrame列计算汇总统计
- min/max 最下最大值 都是每列中的最值
- aigmin/argmax 最小、大值的索引位置
- idxmin/idxmax 能获取到最小值和最大值的索引值
- quantile 计算样本的分位数
- sum() 计算每列的和
- mean()计算每列的均值
- median 计算每列的算数中位数
- mad() 根据平均值计算平均绝对离差
- var 计算每列的方差
- std 计算每列的标准差
- skew 样本值的偏度(三阶矩)
- kurt 样本值的峰度(四阶矩)
- cumsum 样本值的累计和
- cummin/cummax 累计最大值和累计最小值
- cumprod 累计积
- diff 计算一阶差分
- pct_change 计算百分数变化
Series的唯一值、值的count数、
- obj.unique() 返回唯一值数组
- obj.value_counts() 计算各个值出现的次数
- pd.value_counts(obj.values) 这个也可以用来计算count数,是顶层的方法
- isin([]) 判断Series各个值是否包含于传入的值序列中
四、处理缺失数据
NAN处理方法
- dropna 删除空值
- fillna 给空值赋值
- isnull 判断是否有空值存在
- notnull
DataFrame.drop()复杂情况
In [49]: fram1
Out[49]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
In [50]: cleaned = fram1.dropna()
In [51]: cleaned
Out[51]:
0 1 2
0 1.0 6.5 3.0
In [52]: fram1.dropna(how='all')
Out[52]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
3 NaN 6.5 3.0
#如上形式丢弃列的空值,传入axis=1
填充缺失值
obj.fillna()暴力填充
fram.fillna({1:0.1,2:0.2}) 对dataframe可以指定列填充对应的缺失值
#传入method,可以给每列填充一个上一个非空的数字,并且可以通过limit限制每列填充的个数
implace =True 会产生新的对象
In [57]: df
Out[57]:
0 1 2
0 -0.018286 0.246567 1.115108
1 0.722105 0.984472 -1.709935
2 1.477394 NaN 1.362234
3 0.077912 NaN 0.414627
4 0.530048 NaN NaN
5 0.294424 NaN NaN
In [58]: df.fillna(method='ffill')
Out[58]:
0 1 2
0 -0.018286 0.246567 1.115108
1 0.722105 0.984472 -1.709935
2 1.477394 0.984472 1.362234
3 0.077912 0.984472 0.414627
4 0.530048 0.984472 0.414627
5 0.294424 0.984472 0.414627
In [59]: df.fillna(method='ffill',limit=2)
Out[59]:
0 1 2
0 -0.018286 0.246567 1.115108
1 0.722105 0.984472 -1.709935
2 1.477394 0.984472 1.362234
3 0.077912 0.984472 0.414627
4 0.530048 NaN 0.414627
5 0.294424 NaN 0.414627
五、层次化索引
DataFrame和层次化索引可以互相转换
frame.stack() /unstack()