Kubernetes 编写自定义 controller

原文链接:Kubernetes编写自定义controller

来自kubernetes官方github的一张图:

Kubernetes 编写自定义 controller_第1张图片

 

 

如图所示,图中的组件分为client-go和custom controller两部分:

  1. client-go部分

    • Reflector: 监视特定资源的k8s api, 把新监测的对象放入Delta Fifo队列,完成此操作的函数是ListAndWatch。
    • Informer: 从Delta Fifo队列拿出对象,完成此操作的函数是processLoop。
    • Indexer: 提供线程级别安全来存储对象和key。
  2. custom-controller部分

    • Informer reference: Informer对象引用
    • Indexer reference: Indexer对象引用
    • Resource Event Handlers: 被Informer调用的回调函数,这些函数的作用通常是获取对象的key,并把key放入Work queue,以进一步做处理。
    • Work queue: 工作队列,用于将对象的交付与其处理分离,编写Resource event handler functions以提取传递的对象的key并将其添加到工作队列。
    • Process Item: 用于处理Work queue中的对象,可以有一个或多个其他函数一起处理;这些函数通常使用Indexer reference或Listing wrapper来检索与该键对应的对象。

client-go官方代码例子

package main

import (
    "flag"
    "fmt"
    "time"

    "k8s.io/klog"

    "k8s.io/api/core/v1"
    meta_v1 "k8s.io/apimachinery/pkg/apis/meta/v1"
    "k8s.io/apimachinery/pkg/fields"
    "k8s.io/apimachinery/pkg/util/runtime"
    "k8s.io/apimachinery/pkg/util/wait"
    "k8s.io/client-go/kubernetes"
    "k8s.io/client-go/tools/cache"
    "k8s.io/client-go/tools/clientcmd"
    "k8s.io/client-go/util/workqueue"
)

// 定义一个结构体Controller
type Controller struct {
    indexer  cache.Indexer
    queue    workqueue.RateLimitingInterface
    informer cache.Controller
}

// 获取controller的函数
func NewController(queue workqueue.RateLimitingInterface, indexer cache.Indexer, informer cache.Controller) *Controller {
    return &Controller{
        informer: informer,
        indexer:  indexer,
        queue:    queue,
    }
}

// 处理workqueue中的对象
func (c *Controller) processNextItem() bool {
    // Wait until there is a new item in the working queue
    key, quit := c.queue.Get()
    if quit {
        return false
    }
    // Tell the queue that we are done with processing this key. This unblocks the key for other workers
    // This allows safe parallel processing because two pods with the same key are never processed in
    // parallel.
    defer c.queue.Done(key)

    // Invoke the method containing the business logic
    err := c.syncToStdout(key.(string))
    // Handle the error if something went wrong during the execution of the business logic
    c.handleErr(err, key)
    return true
}

// syncToStdout is the business logic of the controller. In this controller it simply prints
// information about the pod to stdout. In case an error happened, it has to simply return the error.
// The retry logic should not be part of the business logic.
func (c *Controller) syncToStdout(key string) error {
    obj, exists, err := c.indexer.GetByKey(key)
    if err != nil {         klog.Errorf("Fetching object with key %s from store failed with %v", key, err)
        return err
    }

    if !exists {         // Below we will warm up our cache with a Pod, so that we will see a delete for one pod
        fmt.Printf("Pod %s does not exist anymore\n", key)
    } else {
        // Note that you also have to check the uid if you have a local controlled resource, which
        // is dependent on the actual instance, to detect that a Pod was recreated with the same name
        fmt.Printf("Sync/Add/Update for Pod %s\n", obj.(*v1.Pod).GetName())
    }
    return nil
}

// handleErr checks if an error happened and makes sure we will retry later.
func (c *Controller) handleErr(err error, key interface{}) {
    if err == nil {
        // Forget about the #AddRateLimited history of the key on every successful synchronization.
        // This ensures that future processing of updates for this key is not delayed because of
        // an outdated error history.
        c.queue.Forget(key)
        return
    }

    // This controller retries 5 times if something goes wrong. After that, it stops trying.
    if c.queue.NumRequeues(key) < 5 {
        klog.Infof("Error syncing pod %v: %v", key, err)

        // Re-enqueue the key rate limited. Based on the rate limiter on the
        // queue and the re-enqueue history, the key will be processed later again.
        c.queue.AddRateLimited(key)
        return
    }

    c.queue.Forget(key)
    // Report to an external entity that, even after several retries, we could not successfully process this key
    runtime.HandleError(err)
    klog.Infof("Dropping pod %q out of the queue: %v", key, err)
}

func (c *Controller) Run(threadiness int, stopCh chan struct{}) {
    defer runtime.HandleCrash()

    // Let the workers stop when we are done
    defer c.queue.ShutDown()
    klog.Info("Starting Pod controller")

    go c.informer.Run(stopCh)

    // Wait for all involved caches to be synced, before processing items from the queue is started
    if !cache.WaitForCacheSync(stopCh, c.informer.HasSynced) {         runtime.HandleError(fmt.Errorf("Timed out waiting for caches to sync"))
        return
    }

    for i := 0; i < threadiness; i++ {
        go wait.Until(c.runWorker, time.Second, stopCh)
    }

    <-stopCh
    klog.Info("Stopping Pod controller")
}

func (c *Controller) runWorker() {
    for c.processNextItem() {
    }
}

func main() {
    var kubeconfig string
    var master string

    // 指定kubeconfig文件
    flag.StringVar(&kubeconfig, "kubeconfig", "", "absolute path to the kubeconfig file")
    flag.StringVar(&master, "master", "", "master url")
    flag.Parse()

    // creates the connection
    config, err := clientcmd.BuildConfigFromFlags(master, kubeconfig)
    if err != nil {         klog.Fatal(err)
    }

    // creates the clientset
    clientset, err := kubernetes.NewForConfig(config)
    if err != nil {         klog.Fatal(err)
    }

    // create the pod watcher
    podListWatcher := cache.NewListWatchFromClient(clientset.CoreV1().RESTClient(), "pods", v1.NamespaceDefault, fields.Everything())

    // create the workqueue
    queue := workqueue.NewRateLimitingQueue(workqueue.DefaultControllerRateLimiter())

    // Bind the workqueue to a cache with the help of an informer. This way we make sure that
    // whenever the cache is updated, the pod key is added to the workqueue.
    // Note that when we finally process the item from the workqueue, we might see a newer version
    // of the Pod than the version which was responsible for triggering the update.
    indexer, informer := cache.NewIndexerInformer(podListWatcher, &v1.Pod{}, 0, cache.ResourceEventHandlerFuncs{
        AddFunc: func(obj interface{}) {
            key, err := cache.MetaNamespaceKeyFunc(obj)
            if err == nil {
                queue.Add(key)
            }
        },
        UpdateFunc: func(old interface{}, new interface{}) {
            key, err := cache.MetaNamespaceKeyFunc(new)
            if err == nil {
                queue.Add(key)
            }
        },
        DeleteFunc: func(obj interface{}) {
            // IndexerInformer uses a delta queue, therefore for deletes we have to use this
            // key function.
            key, err := cache.DeletionHandlingMetaNamespaceKeyFunc(obj)
            if err == nil {
                queue.Add(key)
            }
        },
    }, cache.Indexers{})

    controller := NewController(queue, indexer, informer)

    // We can now warm up the cache for initial synchronization.
    // Let's suppose that we knew about a pod "mypod" on our last run, therefore add it to the cache. // If this pod is not there anymore, the controller will be notified about the removal after the // cache has synchronized. indexer.Add(&v1.Pod{ ObjectMeta: meta_v1.ObjectMeta{ Name: "mypod", Namespace: v1.NamespaceDefault, }, }) // Now let's start the controller
    stop := make(chan struct{})
    defer close(stop)
    go controller.Run(1, stop)

    // Wait forever
    select {}
}

 

转载于:https://www.cnblogs.com/wangjq19920210/p/11527311.html

你可能感兴趣的:(Kubernetes 编写自定义 controller)