一、介绍
RankLib.jar 是一个学习排名(Learning to rank)算法的库,目前已经实现了如下几种算法:
- MART
- RankNet
- RankBoost
- AdaRank
- Coordinate Ascent
- LambdaMART
- ListNet
- Random Forests
- Linear regression
二、jar 包
Usage: java -jar RankLib.jar
Params:
[+] Training (+ tuning and evaluation)
# 训练数据
-train Training data
# 指定排名算法
-ranker Specify which ranking algorithm to use
0: MART (gradient boosted regression tree)
1: RankNet
2: RankBoost
3: AdaRank
4: Coordinate Ascent
6: LambdaMART
7: ListNet
8: Random Forests
9: Linear regression (L2 regularization)
# 特征描述文件,列出要学习的特征,每行一个特征,默认使用所有特征
[ -feature ] Feature description file: list features to be considered by the learner, each on a separate line
If not specified, all features will be used.
#
[ -metric2t ] Metric to optimize on the training data. Supported: MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k (default=ERR@10)
[ -gmax
1. -train
指定训练数据的文件,训练数据格式:
label qid:$id $featureid:$featurevalue $featureid:$featurevalue ... # description
每行代表一个样本,相同查询请求的样本的 qid 相同,label 表示该样本和该查询请求的相关程度,description 描述信息,不参与训练计算。
2、-ranker
指定排名算法
- MART(Multiple Additive Regression Tree)多重增量回归树
- GBDT(Gradient Boosting Decision Tree)梯度渐进决策树
- GBRT(Gradient Boosting Regression Tree)梯度渐进回归树
- TreeNet 决策树网络
- RankNet
- RankBoost
- AdaRank
- Coordinate Ascent
- LambdaMART
- ListNet
- Random Forests
- Linear regression
3、-feature
指定样本的特征定义文件,格式如下:
feature1
feature2
...
# featureK(该特征不参与分析)
4、-metric2t
指定信息检索中的评价指标,包括:
MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k
5、Example
java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -test MQ2008/Fold1/test.txt -validate MQ2008/Fold1/vali.txt -ranker 6 -metric2t NDCG@10 -metric2T ERR@10 -save mymodel.txt
命令解释 >>>
训练数据:MQ2008/Fold1/train.txt
测试数据:MQ2008/Fold1/test.txt
验证数据:MQ2008/Fold1/vali.txt
排名算法:6,LambdaMART
评估指标:NDCG,取排名前 10 个数据进行计算
测试数据评估指标:ERR,取排名前 10 个数据进行计算
保存模型:mymodel.txt
- 参数 -validate 是可选的,但可以更好的模型结果,对于 RankNet/MART/LambdaMART 非常重要。
- -metric2t 仅应用于 list-wise 算法(AdaRank、Coordinate Ascent 和 LambdaMART);point-wise 和 Pair-wise 算法(MART、RankNet、RankBoost)是使用自己内部的 RMSE/pair-wise loss 作为评价指标。ListNet 虽然是 list-wise 算法,但是也不用 metric2t 指定评价指标。
6、k-fold cross validation
- 顺序分区
java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -ranker 4 -kcv 5 -kcvmd models/ -kcvmn ca -metric2t NDCG@10 -metric2T ERR@10
按顺序将训练数据拆分5等份,第 i 份数据作为第 i 折叠的测试数据,第 i 折叠的训练数据则是由其他折叠的数据组成。
- 随机分区
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt -output mydata/ -shuffle
将训练数据 train.txt 重新洗牌存储在 mydata/ 目录下 train.txt.shuffled
- 获取每个折叠中的数据
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt.shuffled -output mydata/ -k 5
7、评估已训练的模型
java -jar bin/RankLib.jar -load mymodel.txt -test MQ2008/Fold1/test.txt -metric2T ERR@10
8、模型对比
java -jar bin/RankLib.jar -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/baseline.ndcg.txt
java -jar bin/RankLib.jar -load ca.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/ca.ndcg.txt
java -jar bin/RankLib.jar -load lm.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/lm.ndcg.txt
输出文件中包含了每条查询的 NDCG@10 指标值,以及所有查询的综合指标,例如:
NDCG@10 170 0.0
NDCG@10 176 0.6722390270733757
NDCG@10 177 0.4772656487866462
NDCG@10 178 0.539003131276382
NDCG@10 185 0.6131471927654585
NDCG@10 189 1.0
NDCG@10 191 0.6309297535714574
NDCG@10 192 1.0
NDCG@10 194 0.2532778777010656
NDCG@10 197 1.0
NDCG@10 200 0.6131471927654585
NDCG@10 204 0.4772656487866462
NDCG@10 207 0.0
NDCG@10 209 0.123151194370365
NDCG@10 221 0.39038004999210174
NDCG@10 all 0.5193204478059303
然后再进行对比:
java -cp RankLib.jar ciir.umass.edu.eval.Analyzer -all output/ -base baseline.ndcg.txt > analysis.txt
对比结果 analysis.txt 如下:
Overall comparison
------------------------------------------------------------------------
System Performance Improvement Win Loss p-value
baseline_ndcg.txt [baseline] 0.093
LM_ndcg.txt 0.2863 +0.1933 (+207.8%) 9 1 0.03
CA_ndcg.txt 0.5193 +0.4263 (+458.26%) 12 0 0.0
Detailed break down
------------------------------------------------------------------------
[ < -100%) [-100%,-75%) [-75%,-50%) [-50%,-25%) [-25%,0%) (0%,+25%] (+25%,+50%] (+50%,+75%] (+75%,+100%] ( > +100%]
LM_ndcg.txt 0 0 1 0 0 4 2 2 1 0
CA_ndcg.txt 0 0 0 0 0 1 6 2 3 0
9、利用训练模型重排名
java -jar RankLib.jar -load mymodel.txt -rank myResultLists.txt -score myScoreFile.txt
myScoreFile.txt 文件中只是增加了一列,表示重新计算的排名评分,需要自己另外根据该评分排序获取新的排名顺序。
1 0 -7.528650760650635
1 1 2.9022061824798584
1 2 -0.700125515460968
1 3 2.376657485961914
1 4 -0.29666265845298767
1 5 -2.038628101348877
1 6 -5.267711162567139
1 7 -2.022146463394165
1 8 0.6741248369216919
...
参考
RankLib wiki