#导入相关库
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer
#
为spark的SparkSession对象
spark = SparkSession.builder.master("local").appName("Word Count").getOrCreate()
#构建训练数据集
training=spark.createDataFrame([
(0,"a b c d e spark",1.0),
(1,"b d",0.0),
(2,"spark f g h",1.0),
(3,"hadoop mapreduce",0.0)],["id","text","label"])
#定义 Pipeline 中的各个工作流阶段PipelineStage,包括转换器和评估器,具体的,包含tokenizer, hashingTF和lr三个步骤。
tokenizer = Tokenizer(inputCol="text",outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter =10, regParam=0.001)
#
按照具体的处理逻辑有序的组织PipelineStages 并创建一个Pipeline。
#现在构建的Pipeline本质上是一个Estimator,在它的fit()方法运行之后,它将产生一个PipelineModel,它是一个Transformer
#
model的类型是一个PipelineModel
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
model = pipeline.fit(training)
#先构建测试数据。
test = spark.createDataFrame([
(4,"spark i j k"),
(5," l m n"),
(6,"spark hadoop spark"),
(7,"apache hadoop")],["id","text"])
#调用我们训练好的PipelineModel的transform()方法,让测试数据按顺序通过拟合的工作流,生成我们所需要的预测结果
prediction =model.transform(test)
selected = prediction.select("id","text","probability","prediction")
for row in selected.collect():
rid, text, prob, prediction =row
print("(%d, %s) --> prob=%s, prediction=%f" % (rid, text, str(prob), prediction))
效果图