matlab练习程序(Ritter‘s最小包围圆)

原始算法是sphere,我这里简化为circle了。

Ritter's求最小包围圆为线性算法,因为非常简单,所以应用非常广泛。

该算法求出的圆比最优圆大概会大个5%到20%左右,求最优圆应该可以用Bouncing Bubble算法,以后有机会可以尝试一下。

Ritter's算法如下:

1.从点集中随机选出两个点作为直径对圆进行初始化。

2.判断下一个点p是否在圆中,如果在则继续本步骤,如果不在则进行步骤3。

3.使用p作为新圆的一个边界点,另一个边界点为距离p最远的圆上的点,使用这两个点作为直径构造新圆。

4.继续步骤2,直到遍历完所有点。

结果如下:

matlab练习程序(Ritter‘s最小包围圆)_第1张图片

matlab代码如下:

clear all;close all;clc;

n=100;
p=rand(n,2);

p1=p(1,:);
p2=p(2,:);
r=sqrt((p1(1)-p2(1))^2+(p1(2)-p2(2))^2)/2;
cenp=(p1+p2)/2;

for i=3:n
    newp=p(i,:);    
    d=sqrt((cenp(1)-newp(1))^2+(cenp(2)-newp(2))^2);  
    if d>r
        r=(r+d)/2;
        cenp=cenp+(d-r)/d*(newp-cenp);
    end    
end

hold on;
plot(p(:,1),p(:,2),'o');
x0=cenp(1);
y0=cenp(2);
theta=0:0.01:2*pi;
x=x0+r*cos(theta);
y=y0+r*sin(theta);
plot(x,y,'-',x0,y0,'.');
axis equal

参考:http://en.wikipedia.org/wiki/Bounding_sphere

转载于:https://www.cnblogs.com/tiandsp/p/3991462.html

你可能感兴趣的:(matlab练习程序(Ritter‘s最小包围圆))