本文首发于美篇(https://www.meipian.cn/q8v4psf),作者周少华,雷锋网 AI 科技评论获本人授权转载,文章略有删节,并获得了周少华博士的再次核对编辑,特此表示感谢。
周少华 Kevin, 中国科技大学学士, 美国马里兰大学博士, 专业电子工程。现在西门子负责研发与医学图像相关的创新产品。他撰写编辑了五本学术专著,发表了180+篇学术期刊及会议论文和著作章节,并拥有80+项批准专利。他多次获奖,包括发明奥斯卡奖、西门子年度发明家、爱迪生专利奖、马里兰大学ECE杰出校友奖。他是IEEE TMI和Medical Image Analysis期刊副主编、CVPR和 MICCAI 的领域主席、《视觉求索》主编、美国医学与生物工程院 Fellow。
MICCAI 是医学影像分析 (Medical Image Analysis) 研究领域的顶尖年会。今年 9 月 10 日到 14 日在加拿大魁北克会议中心举行,与会者达 1350 人左右。
本次 MICCAI 会前,我不仅作为作者投稿,也有幸成为大会程序委员会的 Area Chair 之一。所以 5 月 12 日到 14 日,已经飞到魁北克参加了 MICCAI 2017 Area Chair meeting。详情请参如下链接。
MICCAI 2017 Area Chair 会议记
9 月 12 日星期二 12:30pm -- 1:30pm Convention Center Room 202A
Medical Image Analysis 是 MICCAI society 的旗舰学术杂志,代表了该领域的最高学术水平。作为该杂志的 associate editor 之一,我参加了 editorial board 的午餐会议。同时与会的华人还有沈定刚(北卡大学教授)和李硕(加拿大西安大略大学副教授)。
总体而言,杂志情况与去年基本持平,submission 量略有提高。中国 submission 位居第三,接收文章有 10 篇,比去年有进步。希望中国的同行们继续努力。
会后,主编之一 Nicholas Ayache (Research Director at INRIA) 主动联系我,谢谢我的工作并询问工作量是不是太重。我主要是处理 Machine learning and deep learning 方面的工作,看来这方面研究正红还会继续红火。
9 月 13 日星期三 早上 8 到 10 点
MICCAI Oral Session 14 是专门针对工业界设计的,共有四个演讲,头三个是大会的常规论文,最后一个是特邀演讲,演讲之后还有个 panel 讨论。Tanveer(IBM) 和我共同主持。
可能是由于受星期二 gala 的影响,一开始诺大的厅里只坐了几排人,大家的 energy level 不高。后来人群逐渐涌入,最后整个大厅爆满。大家的热情也越来越高,听众竟然要排队提问。这也说明大家对于 industry 应用非常关心。
会后有许多人反应这次 industry session 组织得很好,信息量丰富,知识点多,务实不从虚。
9 月 13 日星期三 晚 6:30pm, Observatoire de la Capitale
大会的质量很大程度上取决于大会的文章质量。程序委员会是最终决定文章收录的。为了回报对其成员的辛勤付出,大会特地在观景台 31 楼犒赏三军。魁北克全城面貌尽瞰眼底。
Young Scientist Award 是奖励年轻的科学家,获奖者必须满足两个条件:
(i)需为文章的第一作者;
(II)需是在校学生,毕业一年内亦可。
有幸受邀成为 Committee 成员之一,Committee 主席是今年刚入选 MICCAI Fellow 的 Josien Pluim(TU Eindhoven教授)。Committee 成员中还有蔡卫东(悉尼大学教授)。
Committee 共同进行了三轮筛选。
第一轮是 committee chairman 选出有可能入选的文章 20 篇。
第二轮是 committee members 分别给 20 篇打二值分。打分汇总后剩下 12 篇进入下一轮。
最后一轮是 committee members 进一步暗中观察 poster presentation,综合打分。最后,汇总讨论决定 award。
获奖文章的 poster
9 月 14 星期四 早上 8:00-8:45
随着深度学习深入人心,Deep Learning for Medical Image Analysis (DLMIA) Workshop 也越来越热门。我有幸受邀给 keynote speech,题目是"Deep learning and beyond:medical image recognition, segmentation, and parsing"。
我首先简单介绍了西门子最新研究成果 Cinematic Rendering,然后讲述了 Medical Image Recognition, Segmentation , and Parsing(医学图像识别、分割、分解)的必要性、挑战与困难、机器学习方法与知识模型结合的有效性以及实例。
随后,综述了深度学习的最新研究前沿 (skip connection, attention, deep supervision, image-to-image network, etc.),以及西门子利用深度学习并结合知识模型的最新成果。
会前收到 Alex Frangi (University of Sheffield教授) 的邀请,希望成为 MICCAI book series editorial board 成员,帮助 book series 评审书稿申请,并推荐新的书目。我们借机见了面。
趁机宣传一下我最近的两本新书,正是属于这个 book series,在大会都有展示。
Medical Image Recognition, Segmentation and Parsing (Zhou Ed. )
Deep Learning for Medical Image Analysis (Zhou, Greenspan and Shen Eds. )
我们编者三人组(沈定刚、以色列 Tel-Aviv University教授 Hayit Greenspan、我)在编书过程中打了无数电话,终于趁这次会议机会可以面对面。
Yoshua Bengio (蒙特利尔大学教授)是深度学习的“三架马车”之一。他受邀给MICCAI大会作Keynote Speech。下面摘要了他演讲的Slide标题。
Intelligence needs knowledge; Machine learning, AI, no free lunch; Bypassing the curse of dimensionality (compositionality); Distributed representation; Anything new with deep learning since the neural nets of 90s; Generative adversarial network; Attention using gating units; We are starting to better understand why deep learning is working; Still far from human level AI; Humans outperform machines at unsupervised learning; Latent variables and abstract representations; Maps between representations; Deep data fusion; Combining heterogeneous sources with missing modalities; Curriculum learning as a continuation method; Guided training, intermediate concepts; CASED Jesson et al. MICCAI 2017; Conclusions and future perspectives.
顺便给自己的文章做个广告。
《Automatic Liver Segmentation Using an Adversarial Image-to-Image Network》
先提出图像到图像的网络,输入原图像,输出分割 mask 图。然后引入了对抗网络,用于 regularize 输出的分割 mask,可以看作是 shape prior。对抗网络,最早是用来做图象生成,目前还在研究中,最终效果尚待观察。但用它来做 regularizer,实际中似乎很有效。实验是基于上千的 CT 影像,准确度达到了前所未有的程度。
《Supervised Action Classifier: Approaching Landmark Detection as Image Partitioning》
常规的 landmark 表达包括点坐标、heatmap 图等。提出一种新的表达方式 action map,用于表示 landmark。实验结果表明此表达方式效果明显。
《Deep Image-to-Image Recurrent Network with Shape Basis Learning for Automatic Vertebra Labeling in Large-Scale 3D CT Volumes》
用 DL 找到脊椎 landmark heatmap 之后,进一步结合先验知识来提高准确定位和降低错误率。这里的先验知识是指脊椎 landmark 的相互关系。
本次会议中国力量进一步加强。与会的中国人数比上届明显增加,周一晚上聚餐的报名供不应求也是一个例证。另外录取文章数以中国人为第一作者的占近四成。最后,获得的各种奖项也很多。
香港中文大学窦琪、于乐全、陈浩等人的文章获 medical image analysis: miccai2016 special issue 最佳文章奖。
闰平昆(RPI 新晋助理教授)获 IJCARS Miccai2016 special issue 最佳论文奖。
西安大略大学的薛武峰获 Young scientist award。
王国泰(UCL)获 BraTS Challenge 第二名。
忙碌了近一周,MICCAI2017 落幕了。
总结与预测:
• 正如去年预测的一样,DL 已经大肆"入侵"MICCAI。据不完全统计,约一半文章与 DL 相关。遗憾的是,真正突出的文章不多,CVPR 也是这样。预测明年 DL 相关文章占比会更多。
• 随着人工智能大热,今年 CVPR 在各个方面达到了顶峰。MICCAI 则不然,文章数基本持平,参会人数达到新高。原因可能是 MICCAI 的文章更偏向 research 场景,侧重 clinical 应用的不算太多;而 CVPR 的文章很多是关于实际应用的。预测明年 MICCAI 文章会有更多侧重 clinical 应用,文章数和参会人数达新高。
• MICCAI 华人力量日益强大。预测华人与会人数会更多。