个人笔记,仅供复习
1.概念:离散化就是把无限空间的有限个体映射到有限空间去,从而大幅节省空间或时间。基本思想就是在众多可能的情况中“只考虑我需要用的值”
2.适用范围:除了对于较大整数需要使用离散化之外,对于一些需要使用整型数据结构,但给出的数据却是小数的也可以使用离散化,将其索引为整数就可以了。
3.一般步奏:
- 排序
- 去重
- 建立索引
4.例题:Uva12171
// UVa12171 Sculpture
// Rujia Liu
#include
#include
#include
#include
using namespace std;
const int maxn = 50 + 5;
const int maxc = 1000 + 1;
// original data
int n, x0[maxn], y0[maxn], z0[maxn], x1[maxn], y1[maxn], z1[maxn];
// discretization related
int nx, ny, nz;
int xs[maxn*2], ys[maxn*2], zs[maxn*2];
// floodfill related
const int dx[] = {1,-1,0,0,0,0};
const int dy[] = {0,0,1,-1,0,0};
const int dz[] = {0,0,0,0,1,-1};
int color[maxn*2][maxn*2][maxn*2];
struct Cell {
int x, y, z;
Cell(int x=0, int y=0, int z=0):x(x),y(y),z(z){}
bool valid() const {
return x >= 0 && x < nx-1 && y >= 0 && y < ny-1 && z >= 0 && z < nz-1;
}
bool solid() const {
return color[x][y][z] == 1; // solid
}
bool getVis() const {
return color[x][y][z] == 2; // visited
}
void setVis() const {
color[x][y][z] = 2;
}
Cell neighbor(int dir) const {
return Cell(x+dx[dir], y+dy[dir], z+dz[dir]);
}
int volume() const {
return (xs[x+1]-xs[x])*(ys[y+1]-ys[y])*(zs[z+1]-zs[z]);
}
int area(int dir) const {
if(dx[dir] != 0) return (ys[y+1]-ys[y])*(zs[z+1]-zs[z]);
else if(dy[dir] != 0) return (xs[x+1]-xs[x])*(zs[z+1]-zs[z]);
return (xs[x+1]-xs[x])*(ys[y+1]-ys[y]);
}
};
void discretize(int* x, int& n) {
sort(x, x+n);
n = unique(x, x+n) - x;
}
int ID(int* x, int n, int x0) {
return lower_bound(x, x + n, x0) - x;
}
void floodfill(int& v, int& s) {
v = 0;
s = 0;
Cell c;
c.setVis();
queue q;
q.push(c);
while(!q.empty()) {
Cell c = q.front(); q.pop();
v += c.volume();
for(int i = 0; i < 6; i++) {
Cell c2 = c.neighbor(i);
if(!c2.valid()) continue;
if(c2.solid()) s += c.area(i);
else if(!c2.getVis()){
c2.setVis();
q.push(c2);
}
}
}
v = maxc*maxc*maxc - v;
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
nx = ny = nz = 2;
xs[0] = ys[0] = zs[0] = 0;
xs[1] = ys[1] = zs[1] = maxc;
scanf("%d", &n);
for(int i = 0; i < n; i++) {
scanf("%d%d%d%d%d%d", &x0[i], &y0[i], &z0[i], &x1[i], &y1[i], &z1[i]);
x1[i] += x0[i]; y1[i] += y0[i]; z1[i] += z0[i];
xs[nx++] = x0[i]; xs[nx++] = x1[i];
ys[ny++] = y0[i]; ys[ny++] = y1[i];
zs[nz++] = z0[i]; zs[nz++] = z1[i];
}
discretize(xs, nx);
discretize(ys, ny);
discretize(zs, nz);
// paint
memset(color, 0, sizeof(color));
for(int i = 0; i < n; i++) {
int X1 = ID(xs, nx, x0[i]), X2 = ID(xs, nx, x1[i]);
int Y1 = ID(ys, ny, y0[i]), Y2 = ID(ys, ny, y1[i]);
int Z1 = ID(zs, nz, z0[i]), Z2 = ID(zs, nz, z1[i]);
for(int X = X1; X < X2; X++)
for(int Y = Y1; Y < Y2; Y++)
for(int Z = Z1; Z < Z2; Z++)
color[X][Y][Z] = 1;
}
int v, s;
floodfill(v, s);
printf("%d %d\n", s, v);
}
return 0;
} |