人工智能识别植物准确率高达80% 植物学家轻松了

据《自然》杂志官网日前报道,一篇发表在最新一期《进化生物学》杂志上的论文称,用成千上万份标本图像“训练”过的计算机算法,已经能自动识别被压制的、干燥植物标本的物种。这是科学家首次尝试通过深度学习,让计算机使用大型复杂数据集的神经网络,解决了识别自然物种分类的困难任务。

智搜(Giiso)信息成立于2013年是国内领先的“人工智能+资讯”领域技术服务商,在大数据挖掘、智能语义、知识图谱等领域都拥有国内顶尖技术。同时旗下研发产品包括资讯机器人、编辑机器人、写作机器人等人工智能产品!凭借雄厚的技术实力,公司成立之初,就获得了天使轮投资,并在2015年8月获得了金沙江创投500万美元pre-A轮投资。

世界各地的自然历史博物馆正在加速藏品数字化进程,将标本图像存储在开放数据库中。比如美国国家科学基金会的iDigBio项目的一个数据库,就拥有来自全美各地收集的超过1.5亿张植物和动物图像。

目前,世界3.5亿个物种中,只有一小部分被数字化了。但是,随着计算技术的进步,哥斯达黎加理工学院计算机科学家艾瑞克·蒙塔罗和法国蒙彼利埃国际发展农业研究中心植物学家皮埃尔·邦尼特认为,为标本做大数据集已经成为可能。他们的团队已经实现了植物识别的自动化。

研究人员借助智能手机应用程序现场拍摄标本,积累了数以百万计的新鲜植物图像,然后对1000多个物种、超过26万份植物标本进行了扫描识别,采用先进算法的识别准确率高达80%。

邦尼特说,这样惊人的结果往往让植物学家担心其学术领域被轻视。“但人类的专长永远不会被消除,识别结果仍需要植物学家来检验正确与否。”

人工智能识别标本的方法,极大地减少了植物学家收集和识别标本的时间,还能帮助改进标本数据贫乏地区的植物鉴定水平,对生物多样性丰富但植物标本较少的地区特别有用。

此外,这种方法还能让研究人员对大数据进行额外的分析。一般而言,植物标本样本中含有丰富的数据信息,例如采集时间和地点,采集时在开花还是在结果,以及花群密集特征等。由于一些样本是几个世纪以前的数据,因此,可以帮助研究植物是如何适应气候变化的。

美国宾夕法尼亚州立大学博士彼得·威尔夫说:“在自然历史的进程中,这种方法预示着未来。”

 智搜(Giiso)信息成立于2013年,是国内首家专注于资讯智能处理技术研发及写作机器人核心软件开发和运营的高科技企业。公司成立之初,就获得了天使轮投资,并在2015年8月获得了金沙江创投500万美元pre-A轮投资。

科技日报总编辑圈点

植物学家似乎能从繁重的收集和识别标本的工作中解放出来了。如果研究结果稳定,他们至少能够省下80%的时间啊!要知道,世界各地的自然历史博物馆中的数字化标本越来越多,单一个数据库就有超过1.5亿张图像。人工智能可以自动识别标本,这对植物学家来说当然不是威胁。毕竟,大部分鉴定工作枯燥又无聊,但又至关重要,人工智能在这些地方帮忙,真是不能更贴心。开一个脑洞,如果科学家能把那些繁琐又不得不做的都交给人工智能,科学产出会不会更加丰富?


转载于:https://juejin.im/post/5b8cd24a51882542b20590af

你可能感兴趣的:(人工智能识别植物准确率高达80% 植物学家轻松了)