[译] TensorFlow 教程 #14 - DeepDream

本文主要实现了DeepDream算法。

另外,在原文中每次迭代都打印出输入图像以及添加梯度后的图像。为了阅读体验,本文每次迭代只打印一张图像。另外github上传文件的大小限制在25M,因此python notebook中也没有显示出所有的输出结果,完整的输出要运行notebook才能看到。

01 - 简单线性模型 | 02 - 卷积神经网络 | 03 - PrettyTensor | 04 - 保存& 恢复
05 - 集成学习 | 06 - CIFAR 10 | 07 - Inception 模型 | 08 - 迁移学习
09 - 视频数据 | 11 - 对抗样本 | 12 - MNIST的对抗噪声 | 13 - 可视化分析

by Magnus Erik Hvass Pedersen / GitHub / Videos on YouTube
中文翻译 thrillerist / Github

如有转载,请附上本文链接。


介绍

在上一篇教程中,我们看到了如何用神经网络的梯度来生成图像。教程#11和#12展示了如何用梯度来生成对抗噪声。教程#13展示了怎么用梯度来生成神经网络内部特征所响应的图像。

本文会使用一个与之前类似的方法。现在我们会用神经网络的梯度来放大输入图像中的图案(patterns)。这个通常称为DeepDream算法,但这个技术实际上有许多不同的变体。

本文基于之前的教程。你需要大概地熟悉神经网络(详见教程 #01和 #02)。

流程图

下面的流程图粗略展示了DeepDream算法的想法。我们使用的是Inception模型,它的层次要比这边显示的更多。我们使用TensorFlow自动导出网络中一个给定层相对于输入图像的梯度。然后用梯度来更新输入图像。这个过程重复多次,直到出现图案并且我们对所得到的图像满意为止。

这里的原理就是,神经网络在图像中看到一些图案的痕迹,然后我们只是用梯度把它放大了。

这里没有显示DeepDream算法的一些细节,例如梯度被平滑了,后面会讨论它的一些优点。梯度也是分块计算的,因此它可以在高分辨率的图像上工作,而不会耗尽计算机内存。

from IPython.display import Image, display
Image('images/14_deepdream_flowchart.png')复制代码

递归优化

Inception模型是在相当低分辨率的图像上进行训练的,大概200-300像素。所以,当我们使用更大分辨率的图像时,DeepDream算法会在图像中创建许多小的图案。

一个解决方案是将输入图像缩小到200-300像素。但是这么低的分辨率(的结果)是像素化而且丑陋的。

另一个解决方案是多次缩小原始图像,在每个较小的图像上运行DeepDream算法。这样会在图像中创建更大的图案,然后以更高的分辨率进行改善。

这个流程图粗略显示了这个想法。算法递归地实现并且支持任何数量的缩小级别。算法有些细节并未在这里展示,比如,图像在缩小之前会做一些模糊处理,并且原始图像只是与DeepDream图像混合在一起,来增加一些原始的细节。

Image('images/14_deepdream_recursive_flowchart.png')复制代码

导入

%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import random
import math

# Image manipulation.
import PIL.Image
from scipy.ndimage.filters import gaussian_filter复制代码

使用Python3.5.2(Anaconda)开发,TensorFlow版本是:

tf.__version__复制代码

'1.1.0'

Inception 模型

前面的一些教程都使用了Inception v3模型。本文将会使用Inception模型的另一个变体。由于Google开发者并没有很好的为其撰写文档(跟通常一样),不太清楚模型是哪个版本。我们在这里用“Inception 5h”来指代它,因为zip包的文件名就是这样,尽管看起来这是Inception模型的一个早期的、更简单的版本。

这里使用Inception 5h模型是因为它更容易使用:它接受任何尺寸的输入图像,然后创建比Inception v3模型(见教程 #13)更漂亮的图像。

import inception5h复制代码

从网上下载Inception 5h模型。这是你保存数据文件的默认文件夹。如果文件夹不存在就自动创建。

# inception.data_dir = 'inception/5h/'复制代码

如果文件夹中不存在Inception模型,就自动下载。
它有50MB。

inception5h.maybe_download()复制代码

Downloading Inception 5h Model ...
Data has apparently already been downloaded and unpacked.

载入模型,以便使用。

model = inception5h.Inception5h()复制代码

Inception 5h模型有许多层可用来做DeepDreaming。我们列出了12个最常用的层,以供参考。

len(model.layer_tensors)复制代码

12

操作图像的帮助函数

这个函数载入一张图像,并返回一个浮点型numpy数组。

def load_image(filename):
    image = PIL.Image.open(filename)

    return np.float32(image)复制代码

将图像保存成jpeg文件。图像是保存着0-255像素的numpy数组。

def save_image(image, filename):
    # Ensure the pixel-values are between 0 and 255.
    image = np.clip(image, 0.0, 255.0)

    # Convert to bytes.
    image = image.astype(np.uint8)

    # Write the image-file in jpeg-format.
    with open(filename, 'wb') as file:
        PIL.Image.fromarray(image).save(file, 'jpeg')复制代码

这是绘制图像的函数。使用matplotlib将得到低分辨率的图像。使用PIL效果比较好。

def plot_image(image):
    # Assume the pixel-values are scaled between 0 and 255.

    if False:
        # Convert the pixel-values to the range between 0.0 and 1.0
        image = np.clip(image/255.0, 0.0, 1.0)

        # Plot using matplotlib.
        plt.imshow(image, interpolation='lanczos')
        plt.show()
    else:
        # Ensure the pixel-values are between 0 and 255.
        image = np.clip(image, 0.0, 255.0)

        # Convert pixels to bytes.
        image = image.astype(np.uint8)

        # Convert to a PIL-image and display it.
        display(PIL.Image.fromarray(image))复制代码

归一化图像,则像素值在0.0到1.0之间。这个在绘制梯度时很有用。

def normalize_image(x):
    # Get the min and max values for all pixels in the input.
    x_min = x.min()
    x_max = x.max()

    # Normalize so all values are between 0.0 and 1.0
    x_norm = (x - x_min) / (x_max - x_min)

    return x_norm复制代码

对梯度做归一化之后,用这个函数绘制。

def plot_gradient(gradient):
    # Normalize the gradient so it is between 0.0 and 1.0
    gradient_normalized = normalize_image(gradient)

    # Plot the normalized gradient.
    plt.imshow(gradient_normalized, interpolation='bilinear')
    plt.show()复制代码

这个函数调整图像的大小。函数的参数是你指定的具体的图像分辨率,比如(100,200),它也可以接受一个缩放因子,比如,参数是0.5时,图像每个维度缩小一半。

这个函数用PIL来实现,代码有点长,因为我们用numpy数组来处理图像,其中像素值是浮点值。PIL不支持这个,因此需要将图像转换成8位字节,来确保像素值在合适的范围内。然后,图像被调整大小并转换回浮点值。

def resize_image(image, size=None, factor=None):
    # If a rescaling-factor is provided then use it.
    if factor is not None:
        # Scale the numpy array's shape for height and width.
        size = np.array(image.shape[0:2]) * factor

        # The size is floating-point because it was scaled.
        # PIL requires the size to be integers.
        size = size.astype(int)
    else:
        # Ensure the size has length 2.
        size = size[0:2]

    # The height and width is reversed in numpy vs. PIL.
    size = tuple(reversed(size))

    # Ensure the pixel-values are between 0 and 255.
    img = np.clip(image, 0.0, 255.0)

    # Convert the pixels to 8-bit bytes.
    img = img.astype(np.uint8)

    # Create PIL-object from numpy array.
    img = PIL.Image.fromarray(img)

    # Resize the image.
    img_resized = img.resize(size, PIL.Image.LANCZOS)

    # Convert 8-bit pixel values back to floating-point.
    img_resized = np.float32(img_resized)

    return img_resized复制代码

DeepDream 算法

梯度

下面的帮助函数计算了在DeepDream中使用的输入图像的梯度。Inception 5h模型可以接受任意尺寸的图像,但太大的图像可能会占用千兆字节的内存。为了使内存占用最低,我们将输入图像分割成小的图块,然后计算每小块的梯度。

然而,这可能会在DeepDream算法最终生成的图像中产生肉眼可见的线条。因此我们随机地挑选小块,这样它们的位置就是不同的。这使得在最终的DeepDream图像里,小块之间的缝隙不可见。

这个帮助函数用来确定合适的图块尺寸。比如,期望的图块尺寸为400x400像素,但实际大小取决于图像尺寸。

def get_tile_size(num_pixels, tile_size=400):
    """
    num_pixels is the number of pixels in a dimension of the image.
    tile_size is the desired tile-size.
    """

    # How many times can we repeat a tile of the desired size.
    num_tiles = int(round(num_pixels / tile_size))

    # Ensure that there is at least 1 tile.
    num_tiles = max(1, num_tiles)

    # The actual tile-size.
    actual_tile_size = math.ceil(num_pixels / num_tiles)

    return actual_tile_size复制代码

这个帮助函数计算了输入图像的梯度。图像被分割成小块,然后分别计算各个图块的梯度。图块是随机选择的,避免在最终的DeepDream图像内产生可见的缝隙。

def tiled_gradient(gradient, image, tile_size=400):
    # Allocate an array for the gradient of the entire image.
    grad = np.zeros_like(image)

    # Number of pixels for the x- and y-axes.
    x_max, y_max, _ = image.shape

    # Tile-size for the x-axis.
    x_tile_size = get_tile_size(num_pixels=x_max, tile_size=tile_size)
    # 1/4 of the tile-size.
    x_tile_size4 = x_tile_size // 4

    # Tile-size for the y-axis.
    y_tile_size = get_tile_size(num_pixels=y_max, tile_size=tile_size)
    # 1/4 of the tile-size
    y_tile_size4 = y_tile_size // 4

    # Random start-position for the tiles on the x-axis.
    # The random value is between -3/4 and -1/4 of the tile-size.
    # This is so the border-tiles are at least 1/4 of the tile-size,
    # otherwise the tiles may be too small which creates noisy gradients.
    x_start = random.randint(-3*x_tile_size4, -x_tile_size4)

    while x_start < x_max:
        # End-position for the current tile.
        x_end = x_start + x_tile_size

        # Ensure the tile's start- and end-positions are valid.
        x_start_lim = max(x_start, 0)
        x_end_lim = min(x_end, x_max)

        # Random start-position for the tiles on the y-axis.
        # The random value is between -3/4 and -1/4 of the tile-size.
        y_start = random.randint(-3*y_tile_size4, -y_tile_size4)

        while y_start < y_max:
            # End-position for the current tile.
            y_end = y_start + y_tile_size

            # Ensure the tile's start- and end-positions are valid.
            y_start_lim = max(y_start, 0)
            y_end_lim = min(y_end, y_max)

            # Get the image-tile.
            img_tile = image[x_start_lim:x_end_lim,
                             y_start_lim:y_end_lim, :]

            # Create a feed-dict with the image-tile.
            feed_dict = model.create_feed_dict(image=img_tile)

            # Use TensorFlow to calculate the gradient-value.
            g = session.run(gradient, feed_dict=feed_dict)

            # Normalize the gradient for the tile. This is
            # necessary because the tiles may have very different
            # values. Normalizing gives a more coherent gradient.
            g /= (np.std(g) + 1e-8)

            # Store the tile's gradient at the appropriate location.
            grad[x_start_lim:x_end_lim,
                 y_start_lim:y_end_lim, :] = g

            # Advance the start-position for the y-axis.
            y_start = y_end

        # Advance the start-position for the x-axis.
        x_start = x_end

    return grad复制代码

优化图像

这个函数是DeepDream算法的主要优化循环。它根据输入图像计算Inception模型中给定层的梯度。然后将梯度添加到输入图像,从而增加层张量(layer-tensor)的平均值。多次重复这个过程,并放大Inception模型在输入图像中看到的任何图案。

def optimize_image(layer_tensor, image,
                   num_iterations=10, step_size=3.0, tile_size=400,
                   show_gradient=False):
    """
    Use gradient ascent to optimize an image so it maximizes the
    mean value of the given layer_tensor.

    Parameters:
    layer_tensor: Reference to a tensor that will be maximized.
    image: Input image used as the starting point.
    num_iterations: Number of optimization iterations to perform.
    step_size: Scale for each step of the gradient ascent.
    tile_size: Size of the tiles when calculating the gradient.
    show_gradient: Plot the gradient in each iteration.
    """

    # Copy the image so we don't overwrite the original image.
    img = image.copy()

    print("Image before:")
    plot_image(img)

    print("Processing image: ", end="")

    # Use TensorFlow to get the mathematical function for the
    # gradient of the given layer-tensor with regard to the
    # input image. This may cause TensorFlow to add the same
    # math-expressions to the graph each time this function is called.
    # It may use a lot of RAM and could be moved outside the function.
    gradient = model.get_gradient(layer_tensor)

    for i in range(num_iterations):
        # Calculate the value of the gradient.
        # This tells us how to change the image so as to
        # maximize the mean of the given layer-tensor.
        grad = tiled_gradient(gradient=gradient, image=img)

        # Blur the gradient with different amounts and add
        # them together. The blur amount is also increased
        # during the optimization. This was found to give
        # nice, smooth images. You can try and change the formulas.
        # The blur-amount is called sigma (0=no blur, 1=low blur, etc.)
        # We could call gaussian_filter(grad, sigma=(sigma, sigma, 0.0))
        # which would not blur the colour-channel. This tends to
        # give psychadelic / pastel colours in the resulting images.
        # When the colour-channel is also blurred the colours of the
        # input image are mostly retained in the output image.
        sigma = (i * 4.0) / num_iterations + 0.5
        grad_smooth1 = gaussian_filter(grad, sigma=sigma)
        grad_smooth2 = gaussian_filter(grad, sigma=sigma*2)
        grad_smooth3 = gaussian_filter(grad, sigma=sigma*0.5)
        grad = (grad_smooth1 + grad_smooth2 + grad_smooth3)

        # Scale the step-size according to the gradient-values.
        # This may not be necessary because the tiled-gradient
        # is already normalized.
        step_size_scaled = step_size / (np.std(grad) + 1e-8)

        # Update the image by following the gradient.
        img += grad * step_size_scaled

        if show_gradient:
            # Print statistics for the gradient.
            msg = "Gradient min: {0:>9.6f}, max: {1:>9.6f}, stepsize: {2:>9.2f}"
            print(msg.format(grad.min(), grad.max(), step_size_scaled))

            # Plot the gradient.
            plot_gradient(grad)
        else:
            # Otherwise show a little progress-indicator.
            print(". ", end="")

    print()
    print("Image after:")
    plot_image(img)

    return img复制代码

图像递归优化

Inception模型在相当小的图像上进行训练。不清楚图像的确切大小,但可能每个维度200-300像素。如果我们使用较大的图像,比如1920x1080像素,那么上面的optimize_image()函数会在图像上添加很多小的图案。

这个帮助函数将输入图像多次缩放,然后用每个缩放图像来执行上面的optimize_image()函数。这在最终的图像中生成较大的图案。它也能加快计算速度。

def recursive_optimize(layer_tensor, image,
                       num_repeats=4, rescale_factor=0.7, blend=0.2,
                       num_iterations=10, step_size=3.0,
                       tile_size=400):
    """
    Recursively blur and downscale the input image.
    Each downscaled image is run through the optimize_image()
    function to amplify the patterns that the Inception model sees.

    Parameters:
    image: Input image used as the starting point.
    rescale_factor: Downscaling factor for the image.
    num_repeats: Number of times to downscale the image.
    blend: Factor for blending the original and processed images.

    Parameters passed to optimize_image():
    layer_tensor: Reference to a tensor that will be maximized.
    num_iterations: Number of optimization iterations to perform.
    step_size: Scale for each step of the gradient ascent.
    tile_size: Size of the tiles when calculating the gradient.
    """

    # Do a recursive step?
    if num_repeats>0:
        # Blur the input image to prevent artifacts when downscaling.
        # The blur amount is controlled by sigma. Note that the
        # colour-channel is not blurred as it would make the image gray.
        sigma = 0.5
        img_blur = gaussian_filter(image, sigma=(sigma, sigma, 0.0))

        # Downscale the image.
        img_downscaled = resize_image(image=img_blur,
                                      factor=rescale_factor)

        # Recursive call to this function.
        # Subtract one from num_repeats and use the downscaled image.
        img_result = recursive_optimize(layer_tensor=layer_tensor,
                                        image=img_downscaled,
                                        num_repeats=num_repeats-1,
                                        rescale_factor=rescale_factor,
                                        blend=blend,
                                        num_iterations=num_iterations,
                                        step_size=step_size,
                                        tile_size=tile_size)

        # Upscale the resulting image back to its original size.
        img_upscaled = resize_image(image=img_result, size=image.shape)

        # Blend the original and processed images.
        image = blend * image + (1.0 - blend) * img_upscaled

    print("Recursive level:", num_repeats)

    # Process the image using the DeepDream algorithm.
    img_result = optimize_image(layer_tensor=layer_tensor,
                                image=image,
                                num_iterations=num_iterations,
                                step_size=step_size,
                                tile_size=tile_size)

    return img_result复制代码

TensorFlow 会话

我们需要一个TensorFlow会话来运行图。这是一个交互式的会话,因此我们可以继续往计算图中添加梯度方程。

session = tf.InteractiveSession(graph=model.graph)复制代码

Hulk

在第一个例子中,我们有一张绿巨人的图像。注意看看DeepDream图像是如何保留绝大部分原始图像颜色的。这是由于梯度在其颜色通道中被平滑处理了,因此变得有点像灰阶的,主要改变图像的形状,而不改变其颜色。

image = load_image(filename='images/hulk.jpg')
plot_image(image)复制代码

首先,我们需要Inception模型中的张量的引用,它将在DeepDream优化算法中被最大化。在这个例子中,我们选择Inception模型的第3层(层索引2)。它有192个通道,我们将尝试最大化这些通道的平均值。

layer_tensor = model.layer_tensors[2]
layer_tensor复制代码

现在运行DeepDream优化算法,总共10次迭代,步长为6.0,这是下面递归优化的两倍。每次迭代我们都展示它的梯度,你可以看到图像方块之间的痕迹。

img_result = optimize_image(layer_tensor, image,
                   num_iterations=10, step_size=6.0, tile_size=400,
                   show_gradient=True)复制代码

Image before:

Processing image: Gradient min: -26.993517, max: 25.577057, stepsize: 3.35

>Gradient min: -15.383774, max: 12.962121, stepsize:      5.97复制代码

Gradient min: -5.993865, max: 6.191866, stepsize: 10.42

Gradient min: -3.638639, max: 3.307561, stepsize: 15.68

Gradient min: -2.407669, max: 2.166253, stepsize: 22.57

Gradient min: -1.716694, max: 1.467488, stepsize: 29.86

Gradient min: -1.153857, max: 1.025310, stepsize: 38.37

Gradient min: -1.026255, max: 0.869002, stepsize: 48.34

Gradient min: -0.634610, max: 0.765562, stepsize: 63.08

Gradient min: -0.585900, max: 0.485299, stepsize: 83.16

Image after:

如果你愿意的话,可以保存DeepDream图像。

# save_image(img_result, filename='deepdream_hulk.jpg')复制代码

现在,递归调用DeepDream算法。我们执行5个递归(num_repeats + 1),每个步骤中图像都被模糊并缩小,然后在缩小图像上运行DeepDream算法。接着,在每个步骤中,将产生的DeepDream图像与原始图像混合,从原始图像获取一点细节。这个过程重复了多次。

注意,现在DeepDream的图案更大了。这是因为我们先在低分辨率图像上创建图案,然后在较高分辨率图像上进行细化。

img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
                 num_iterations=10, step_size=3.0, rescale_factor=0.7,
                 num_repeats=4, blend=0.2)复制代码

Recursive level: 0
Image before:

Processing image: . . . . . . . . . .
Image after:

Recursive level: 1
Image before:

Processing image: . . . . . . . . . .
Image after:

Recursive level: 2
Image before:

Processing image: . . . . . . . . . .
Image after:

Recursive level: 3
Image before:

Processing image: . . . . . . . . . .
Image after:

Recursive level: 4
Image before:

Processing image: . . . . . . . . . .
Image after:

现在我们将最大化Inception模型中的较高层。使用7号层(索引6)为例。该层识别输入图像中更复杂的形状,所以DeepDream算法也将产生更复杂的图像。这一层似乎识别了狗的脸和毛发,因此DeepDream算法往图像中添加了这些东西。

再次注意,与DeepDream算法其他变体不同的是,这里输入图像的大部分颜色被保留了下来,创建了更多柔和的颜色。这是因为我们在颜色通道中平滑了梯度,使其变得有点像灰阶,因此不会太多地改变输入图像的颜色。

layer_tensor = model.layer_tensors[6]
img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
                 num_iterations=10, step_size=3.0, rescale_factor=0.7,
                 num_repeats=4, blend=0.2)复制代码

下面这个例子用DeepDream算法来最大化层的特征通道的子集。此时层的索引为7,并且只有前3个特征通道被最大化。

layer_tensor = model.layer_tensors[7][:,:,:,0:3]
img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
                 num_iterations=10, step_size=3.0, rescale_factor=0.7,
                 num_repeats=4, blend=0.2)复制代码

这个例子展示了最大化Inception模型最后一层的第一个特征通道的结果。不太清楚这一层及这个特征可能会在输入图像中识别出什么来。

(译者注:原文的num_repeates参数设为4,我在配有NVIDIA GT 650M的笔记本上运行程序时,会出现内存不足的情况。因此,下面将num_repeates设为3,需要的话可以自己改回来。)

layer_tensor = model.layer_tensors[11][:,:,:,0]
img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
                 num_iterations=10, step_size=3.0, rescale_factor=0.7,
                 num_repeats=3, blend=0.2)复制代码

Giger

image = load_image(filename='images/giger.jpg')
plot_image(image)复制代码

layer_tensor = model.layer_tensors[3]
img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
                 num_iterations=10, step_size=3.0, rescale_factor=0.7,
                 num_repeats=3, blend=0.2)复制代码

Recursive level: 0
Processing image: . . . . . . . . . .

Recursive level: 1
Processing image: . . . . . . . . . .

Recursive level: 2
Processing image: . . . . . . . . . .

Recursive level: 3
Processing image: . . . . . . . . . .

layer_tensor = model.layer_tensors[5]
img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
num_iterations=10, step_size=3.0, rescale_factor=0.7,
num_repeats=3, blend=0.2)

Recursive level: 0
Processing image: . . . . . . . . . .

Recursive level: 1
Processing image: . . . . . . . . . .

Recursive level: 2
Processing image: . . . . . . . . . .

Recursive level: 3
Processing image: . . . . . . . . . .

layer_tensor = model.layer_tensors[5]
img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
                 num_iterations=10, step_size=3.0, rescale_factor=0.7,
                 num_repeats=3, blend=0.2)复制代码

Escher

image = load_image(filename='images/escher_planefilling2.jpg')
plot_image(image)复制代码

layer_tensor = model.layer_tensors[6]
img_result = recursive_optimize(layer_tensor=layer_tensor, image=image,
                 num_iterations=10, step_size=3.0, rescale_factor=0.7,
                 num_repeats=3, blend=0.2)复制代码

Recursive level: 0
Processing image: . . . . . . . . . .

Recursive level: 1
Processing image: . . . . . . . . . .

Recursive level: 2
Processing image: . . . . . . . . . .

Recursive level: 3
Processing image: . . . . . . . . . .

关闭TensorFlow会话

现在我们已经用TensorFlow完成了任务,关闭session,释放资源。

# This has been commented out in case you want to modify and experiment
# with the Notebook without having to restart it.
# session.close()复制代码

总结

这篇教程展示了如何使用神经网络的梯度来放大图像中的图案。输出图像似乎已经用抽象的或类似动物的图案来重新绘制了。

还有许多这种技术的变体,来生成不同的输出图像。我们鼓励你修改上述参数和算法进行实验。

练习

下面使一些可能会让你提升TensorFlow技能的一些建议练习。为了学习如何更合适地使用TensorFlow,实践经验是很重要的。

在你对这个Notebook进行修改之前,可能需要先备份一下。

  • 尝试使用自己的图像。
  • 试试optimize_image()recursive_optimize()的不同参数,看看它如何影响结果。
  • 试着去掉optimize_image()中的梯度。会发生什么?
  • 在运行optimize_image()时绘制梯度。会看到一些失真吗?你认为是什么原因?这重要吗?你能找到一种方法来去掉它们吗?
  • 尝试使用随机噪声作为输入图像。这与教程#13中用于可视化分析的类似。会生成比本教程中更好的图像吗?为什么?
  • inception5h.py这个文件的Inception5h.get_gradient()里,删除tf.square()。 DeepDream图像会发生什么变化?为什么?
  • 你可以将梯度移到optimize_image()外面以节省内存吗?
  • 你能使程序运行得更快吗?一个想法是直接在TensorFlow中实现高斯模糊和调整大小。
  • 通过重复调用optimize_image()并在图像上放大一点,制作一个DeepDream电影。
  • 逐帧处理电影。您可能需要在帧间保持稳定。
  • 向朋友解释程序如何工作。

你可能感兴趣的:([译] TensorFlow 教程 #14 - DeepDream)