- 论文中自己写的内容会被标红吗?
kexiaoya2013
人工智能论文阅读论文笔记
很多人在写论文时,会担心一个问题,如果内容完全是自己写的,查重时会不会被系统标红?一、查重系统工作原理查重系统的核心功能是比对文本相似度。它会将你的论文与数据库中的海量文献进行对比,找出重复或高度相似的片段。要注意的是,查重系统并不会区分内容是谁写的,它只能关注文字本身的重复率。即使某段话是你原创的,但如果数据库中存在相似的表达,系统依然会判定为重复。二、为什么自己写的内容也可能被标红1、常用术语
- python初体验——单/双/三引号的用法
寻梦N
pythonpythonprintf
python首次课程笔记单引号用法双引号用法无引号用法三引号用法总结单引号用法 print()函数中单引号的用法:当括号内有单引号的时候,就相当于告诉计算机——你不需要执行多余的操作,我输入什么,你就打印什么 简言之,单引号里面是什么内容运行后还是什么内容,例如下面的例子 可以看到单引号里面是1+1,那么它运行出来还是1+1双引号用法 在print()函数内不仅能使用单引号,还能使用双引号
- Vue初体验
码上跑步
vue.js前端
Vue基础Vue是什么?Vue是javascript的渐进式框架。Vue初识Vue工作时必须要创建一个Vue的实例,并且传入一个配置对象。root容器里的代码是符合html的语法但是新添加了一些Vue语法,在这些地方Vue会自动进行解析。root容器里的代码称为Vue模版。Vue实例和容器是一一对应的。在实际开发中只有一个Vue,配合组件使用。在vue里的插值{{}}内部只要写js表达式就能正常解
- 鸿蒙全栈开发 D2
GH小杨
harmonyos华为
课程目标掌握ArkTS基础语法与核心概念理解声明式UI开发范式能独立开发简单鸿蒙应用组件建立规范的代码编写习惯第一部分:初识ArkTS1.1语言全景认知JavaScriptTypeScriptArkTS鸿蒙生态手机平板智能穿戴关键特征解析:类型安全:编译时检查错误(演示类型错误案例)UI即代码:通过代码直接描述界面(对比传统XML布局)一次开发:同一套代码适配不同设备尺寸1.2开发环境初体验Dev
- 文本向量化-词嵌入方法系列1:静态词嵌入(Word2Vec+GloVe)
学习ml的小菜鸡
nlp自然语言处理word2vec
文本分散化表示指将语言表示成低维、稠密、连续的向量,分为静态嵌入和动态嵌入两种方式。静态词嵌入有Word2Vec,Sen2Vec,Doc2Vec,以及GloVe模型;而动态词嵌入有ELMO,Transformer,GPT,Bert和XLNet等等。本文主要对静态词嵌入方法做一个整体介绍,动态词嵌入会在系列2中更新。目录1.Word2Vec1.1CBOW1.2Skip-gram1.3Sen2Vec+
- Word2Vec 模型 PyTorch 实现并复现论文中的数据集
Illusionna.
word2vecpytorch人工智能算法自然语言处理nlpmatplotlib
详细注解链接:https://www.orzzz.net/directory/codes/Word2Vec/index.html欢迎咨询!
- python搭建NPL模型的详细步骤和代码
百锦再@新空间代码工作室
包罗万象python开发语言djangoflaskpygamepip
目录**一、环境准备****二、数据准备****三、文本预处理****1.清理文本****四、特征工程****1.TF-IDF****2.Word2Vec****五、搭建NLP模型****1.逻辑回归****2.LSTM深度学习模型****六、使用预训练的BERT模型****七、模型评估****八、部署模型****总结**1.**人机交互的核心技术**2.**推动AI技术发展的动力**3.**广泛
- Uboot启动学习笔记之四-uboot之初体验
six2me
嵌入式之uboot学习c语言
u-boot初体验在这里我们首先要问自己一个问题,前面将了那么多准备的工作,就是为了启动个uboot,那么uboot到底有什么用?它是一致运行的吗,或者叫她的生命周期如何?uboot属于bootloader的一种,是用来引导启动内核的,它的最终目的就是,从flash中读出内核,放到内存中,启动内核.1.uboot的作用1)uboot主要作用是用来启动操作系统内核。体现在uboot最后一句代码就是启
- Word2Vec向量化语句的计算原理
堕落年代
AIword2vec人工智能机器学习
一、Word2Vec的核心理念Word2Vec由Google团队于2013年提出,是一种通过无监督学习生成词向量的模型。其核心思想是“相似的词拥有相似的上下文”,通过上下文关系捕捉词汇的语义和语法特征。生成的向量具有低维(通常100-300维)、连续且稠密的特点,解决了传统One-Hot编码的高维稀疏和语义缺失问题。二、向量化的核心步骤(以Skip-Gram模型为例)示例句子假设句子为:“Theq
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
ai大模型应用开发
人工智能pdf机器学习面试AI
在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进行学习。一、前置阶段数学:线性代数、高等数学自然语言处理:Word2Vec、Seq2SeqPython:Pyotch、Tensorflow二、基
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- BERT 模型 和 Milvus 向量数据库分步骤讲解如何实现「文本相似度搜索」
结合BERT模型和Milvus向量数据库,通过一个Python示例分步骤讲解如何实现「文本相似度搜索」。整个过程分为:文本向量化→存储到Milvus→相似度搜索。1️⃣环境准备安装必要的库:pipinstallpymilvustransformerstorch2️⃣流程图解BERT模型↓将文本转为向量Milvus数据库(存储所有向量)↓输入问题文本Milvus搜索相似向量→返回最相似的答案3️⃣完
- 机器视觉初体验---镭雕码自动识别打印
奇晓迹
labview机器视觉数码相机
视觉初体验-镭雕码自动识别打印引言纸上得来终觉浅,绝知此事要躬行!这是第一个关于视觉方面的简单应用,刚开始以为很简单,但做起来却发现还有许多东西需要解决。从需求的分析到相机的选型,再到后面的开发调试等,经过不断的尝试与试错,最总形成了这样的一套切实可行的方案。本文主要介绍关于机器视觉的一个应用-关于镭雕码的识别。可应用于自动化生产线关于SN的识别。1基础硬件环境1、网线一根,用于通讯,一端接电脑,
- Word2Vec的使用,一些思考,含示例——包括使用预训练Word2Vec模型和自训练Word2Vec模型
热爱生活的猴子
NLP_自然语言处理word2vec人工智能自然语言处理
词嵌入模型(WordEmbeddings)——Word2Vec简介:Word2Vec是由Google团队提出的一种词嵌入方法,通过神经网络模型将词语映射到一个低维的连续向量空间中。你可以直接通过它训练生成词向量,也就是一个新的Word2Vec,也可以使用预训练好的词向量,也就是那里直接用。它有两种模型结构:CBOW(ContinuousBagofWords)和Skip-Gram。CBOW(连续词袋
- Spring Boot整合Redis快速入门实例
oscar999
SpringBoot实战开发大全redisspringbootjava
本篇演示环境本篇基于SpringBoot2.5.0,关于Redis的安装,可以参考:Redis介绍、安装与初体验和Windows下安装和使用Redis。整合步骤导入Redis相关的依赖项配置启动器spring-boot-starter-data-redisorg.springframework.bootspring-boot-starter-data-redis添加连接Redis服务器的相关配置在
- 2W8000字 LLM架构文章阅读指北
人工智能
大模型架构专栏已经更新了30多篇文章。完整的专栏内容欢迎订阅:LLM架构专栏1、LLM大模型架构专栏||从NLP基础谈起2、LLM大模型架构专栏||自然语言处理(NLP)之建模3、LLM大模型架构之词嵌入(Part1)3、LLM大模型架构之词嵌入(Part2)3、LLM大模型架构之词嵌入(Part3)4、LLM架构从基础到精通之Word2Vec训练全解析5、LLM架构从基础到精通之循环神经网络(R
- JSR-107与SpringBoot缓存
weixin_39515823
SpringBootspring
文章目录JSR-107与SpringBoot缓存JSR-107JSR-107核心接口JSR-107图示Spring的缓存抽象缓存抽象定义重要接口Spring缓存使用重要概念&缓存注解缓存初体验@Cacheable注解的属性SpEL表达式@Cacheable的运行流程@CachePut&@CacheEvict&@CacheConfig@CachePut@CacheEvict@CacheConfig缓
- word2vec(一) CBOW与Skip-Gram模型基础
浮汐
自然语言处理
1.词向量词向量就是用来将语言中的词进行数学化的一种方式,顾名思义,词向量就是把一个词表示成一个向量。这样做的初衷就是机器只认识01符号。所以,词向量是自然语言到机器语言的转换。Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词
- python自然语言处理—Word2vec模型之Skip-gram
诗雨时
python
Word2vec模型之Skip-gram(跳字)模型一、skip-gram模型图二、skip-gram模型图示例说明举个例子来说明这个图在干嘛:1、假设我们的文本序列有五个词,["the","man","loves","his","son"]。2、假设我们的窗口大小为skip-window=2,中心词为"loves",那么上下文的词即为:"the"、"man"、"his"、"son"。这里的上下文
- word2vec之skip-gram算法原理
cuixuange
推荐算法word2vecskipgram
skip-gram算法原理1.input,output,targetinput的某个单词的one-hot编码(11000词汇量的总数目)output其他所有单词的概率(softmax输出也是11000)target是相近单词的one-hot形式2.Losstarget和output的矩阵的交叉熵最小or平方差最小3.NNet3.1隐层300个神经元,需要训练的权重矩阵大小是1000300本层的输出
- 使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(自动化篇)
代码轨迹
Python自动化pythondeepseek
7.5.配图生成目的:由于小红书发布文章要求图文格式,因此在生成文案的基础上,我们还需要生成图文搭配文案进行发布。原实现思路:起初我打算使用deepseek的文生图模型Janus进行本地部署生成,参考博客:Deepseek发布的Janus-Pro-1B初体验但后来尝试使用后发现Janus现阶段对于这类特定任务的生成图还不太能够胜任。以下是我尝试使用文案让Janus生成的图片:现实现思路:当下普遍的
- 如何利用USearch实现快速向量搜索:更轻量、更高效的替代方案
sdfugyd
python
引言向量搜索在现代机器学习和信息检索中扮演着重要角色。无论是图像检索、文本相似度计算还是推荐系统,向量搜索都是核心技术之一。本文将介绍一个轻量级、高效的向量搜索引擎——USearch。这种引擎与FAISS在功能上相似,但在设计上更为精简,具备更高的兼容性。接下来,我们将详细讲解如何安装和使用USearch,并提供实用的代码示例。主要内容1.USearch与FAISS的对比USearch的基础功能与
- 使用 AnyscaleEmbeddings 进行文本嵌入
dgay_hua
python
在自然语言处理(NLP)领域中,嵌入(Embedding)是一种将文本转换为向量表示的方法。今天,我们将通过AnyscaleEmbeddings类来演示如何进行文本嵌入,它能有效地将文本转换为高维向量,这在文本相似度计算、文本分类等任务中非常有用。1.技术背景介绍嵌入模型是NLP中的一种常见技术,它能够将语言数据映射为固定长度的高维向量。通过预训练模型(如BERT、GPT等),我们可以获得语义丰富
- 使用SingleStoreDB构建高效的AI检索器
qahaj
人工智能python
在构建现代AI应用时,高效存储和检索向量数据是不可或缺的一环。SingleStoreDB是一款高性能的分布式SQL数据库,不仅支持云端和本地部署,还具备向量存储能力及相关函数(如dot_product和euclidean_distance),能够很好地支持基于向量的应用场景,如文本相似度匹配。本文将以SingleStoreDB为核心,结合LangChain生态系统,展示如何实现一个简单但功能强大的
- AIGC遇上Stable Diffusion:当创意邂逅精准,绘梦成真之旅
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
AIGC遇上StableDiffusion:当创意邂逅精准,绘梦成真之旅AIGC:创意的魔杖,还是技术的魔法?基本概念与魔法起源作用说明:从想象到像素的跨越StableDiffusion实战演练:像素炼金术士的秘籍案例一:像素画师初体验案例二:风格迁移的魔法深入探索:多维度功能使用实战开发技巧与避坑指南技巧一:性能优化避坑:图像模糊或失真安全防范:避免生成有害内容结语:未来已来,梦想无界在这个数字
- Golang并发编程-协程goroutine的信道(channel)
锅锅来了
Golang实战案例golang开发语言后端goroutinechannelgolang并发
文章目录前言一、信道的定义与使用信道的声明信道的使用二、信道的容量与长度三、缓冲信道与无缓冲信道缓冲信道无缓冲信道四、信道的初体验信道关闭的广播机制总结前言Goroutine的开发,当遇到生产者消费者场景的时候,离不开channel(信道)的使用。信道,就是一个管道,连接多个goroutine程序,它是一种队列式的数据结构,遵循先入先出的规则。一、信道的定义与使用信道的声明信道声明的两种方式://
- Golang并发编程-协程goroutine初体验
锅锅来了
Golang实战案例golang开发语言goroutineWaitGroup案例
文章目录前言一、Goroutine适合的使用场景二、Goroutine的使用1.协程初体验三、WaitGroupWaitGroup案例一WaitGroup案例二总结前言学习Golang一段时间了,一直没有使用过goroutine来提高程序执行效率,在一些特殊场景下,还是有必须开启协程提升体验的,打算整理几篇关于协程的原理的文章和案例,结合工作场景将协程使用起来。一、Goroutine适合的使用场景
- 掌握大数据--Hive全面指南
纪祥_ee1
大数据hivehadoop
1.Hive简介2.Hive部署方式3.Hive的架构图4.Hive初体验5.HiveSQL语法--DDL操作数据库1.Hive简介ApacheHive是建立在Hadoop之上的一个数据仓库工具,它提供了一种类似于SQL的查询语言,称为HiveQL,用于查询和分析存储在Hadoop分布式文件系统(HDFS)中的大规模结构化数据。以下是Hive的一些主要特点和介绍:1.类SQL查询语言:HiveSQ
- Go数据结构之简单栈的初体验
思远久安
Go数据结构与算法小白入门数据结构开发语言golang后端
一、栈的实现1.栈是什么对于我们新手小白们,只需要记住的是:栈的特点是先进后出可以简答理解为,一个杯子,我们往里面加水,然后再喝水,先加进去的水,在杯底,所以最后才倒出来,这就是栈因此,在某些应用场景下,我们或许需要自定义一个栈,例如游戏中的枪械,弹匣内子弹的压入和弹出,就类似栈2.实现代码要实现栈,首先要知道栈需要什么方法:栈的大小清空栈往栈内压入元素将栈内元素弹出判断栈的状态话不多说,看看代码
- 【全志REVB-T113-S3】LonganSDK的编译初体验
点灯学徒
[Longan]REVB-T113-S3linux
目录前言一、初次编译LonganSDK二、Ubuntu虚拟机的环境配置1.安装相关软件三、解压Logansdk源码包四、编译源码(最简编译)1.仅仅替换Linux内核配置文件、buildroot配置文件五、全编译(可将qt、cedar编入)1.继续环境配置2.开始编译3.可能遇到的问题最后前言在淘宝逛着逛着,看到了这块黑不溜秋的开发板。看了一下详情,感觉还不错,看了一下价格加上LCD屏幕也不算太贵
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟