阿里云Redis开发规范-------我的经验

参考文章-阿里云Redis开发规范

一、键值设计

1. key名设计

(1)【建议】: 可读性和可管理性

以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id。(我一般是APPID:功能名称:id,而且所有的redisKey的前缀会统一写在一个Class里,同一模块下的redisKey再放在一起,一般redisKey-pre需要能明显的看出该类型存储的数据是干嘛的)

(2)【建议】:简洁性

保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视。太长确实也不好,自己平衡

(3)【强制】:不要包含特殊字符

反例:包含空格、换行、单双引号以及其他转义字符。

2. value设计

(1)【强制】:拒绝bigkey(防止网卡流量、慢查询)

string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。

反例:一个包含200万个元素的list。value的size太大的话会影响网络开销,需要开发自己评估每种缓存key的预估占用体积,不仅如此,当你的redis value占用的数据大小超过整个redis集群的话,就会出现大量新增的key-value把老的给顶替掉,出现缓存命中率降低

非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞,而且该操作不会不出现在慢查询中(latency可查)),查找方法和删除方法

(2)【推荐】:选择适合的数据类型。

例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如ziplist,但也要注意节省内存和性能之间的平衡)这里用的最多的就是String,复杂对象使用JSON序列化的String

反例:
set user:1:name tom
set user:1:age 19
set user:1:favor football
正例:
hmset user:1 name tom age 19 favor football

3.【推荐】:控制key的生命周期,redis不是垃圾桶。

建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注idletime。项目里一般强制要求所有都设置过期时间,避免由于redis问题导致服务不可用

二、命令使用

1.【推荐】 O(N)命令关注N的数量

例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。

2.【推荐】:禁用命令

禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。

3.【推荐】合理使用select

redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

4.【推荐】使用批量操作提高效率

原生命令:例如mget、mset。
非原生命令:可以使用pipeline提高效率。
但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。

注意两者不同:

  1. 原生是原子操作,pipeline是非原子操作。
  2. pipeline可以打包不同的命令,原生做不到
  3. pipeline需要客户端和服务端同时支持。

5.【建议】Redis事务功能较弱,不建议过多使用

Redis的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的key必须在一个slot上(可以使用hashtag功能解决)

6.【建议】Redis集群版本在使用Lua上有特殊要求:

1.所有key都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的redis命令,key的位置,必须是KEYS array, 否则直接返回error,"-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS array"
2.所有key,必须在1个slot上,否则直接返回error, "-ERR eval/evalsha command keys must in same slot"

7.【建议】必要情况下使用monitor命令时,要注意不要长时间使用。

三、客户端使用

1.【推荐】

避免多个应用使用一个Redis实例避免APPID之间相互影响,同理也用数据库

正例:不相干的业务拆分,公共数据做服务化。

2.【推荐】

使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:

执行命令如下:
Jedis jedis = null;
try {
    jedis = jedisPool.getResource();
    //具体的命令
    jedis.executeCommand()
} catch (Exception e) {
    logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
    //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
    if (jedis != null) 
        jedis.close();
}

3.【建议】

高并发下建议客户端添加熔断功能(例如netflix hystrix)

4.【推荐】

设置合理的密码,如有必要可以使用SSL加密访问(阿里云Redis支持)

5.【建议】

根据自身业务类型,选好maxmemory-policy(最大内存淘汰策略),设置好过期时间。如果明明有缓存,缓存时间也够长,但是就是缓存命中率很低的时候可以看看是不是redis集群空间用完了

默认策略是volatile-lru,即超过最大内存后,在过期键中使用lru算法进行key的剔除,保证不过期数据不被删除,但是可能会出现OOM问题。

其他策略如下:

allkeys-random:随机删除所有键,直到腾出足够空间为止。
volatile-random:随机删除过期键,直到腾出足够空间为止。
volatile-ttl:根据键值对象的ttl属性,删除最近将要过期数据。如果没有,回退到noeviction策略。
noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。

四、相关工具

1.【推荐】:数据同步

redis间数据同步可以使用:redis-port

2.【推荐】:big key搜索

redis大key搜索工具

3.【推荐】:热点key寻找(内部实现使用monitor,所以建议短时间使用)

facebook的redis-faina

阿里云Redis已经在内核层面解决热点key问题,欢迎使用。

你可能感兴趣的:(阿里云Redis开发规范-------我的经验)