循环矩阵求特征值的方法

根据https://max.book118.com/html/2016/0519/43353557.shtm整理修订

文章目录

  • 1.循环矩阵的定义
  • 2.循环矩阵的性质
  • 3.循环矩阵的逆及特征值
  • 4.利用循环矩阵求特征值的方法求Jacobi矩阵的特征值

1.循环矩阵的定义

定义1 数域 P \mathbb{P} P上的 n × n n \times n n×n矩阵
C n = c i r c ( c 0 , c 1 , ⋯   , c n − 1 ) = ( c 0 c 1 c 2 ⋯ c n − 1 c n − 1 c n − 1 c 0 c 1 ⋯ c n − 3 c n − 2 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ c 2 c 3 c 4 ⋯ c 0 c 1 c 1 c 2 c 3 ⋯ c n − 1 c 0 ) C_{n} = circ(c_0, c_1, \cdots, c_{n-1}) = \begin{pmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \cdots & c_{n-3} & c_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ c_2 & c_3 & c_4 & \cdots & c_{0} & c_{1}\\ c_1 & c_2 & c_3 & \cdots & c_{n-1} & c_{0}\\ \end{pmatrix} Cn=circ(c0,c1,,cn1)=c0cn1c2c1c1c0c3c2c2c1c4c3cn1cn3c0cn1cn1cn2c1c0
其中 c i ∈ P c_i \in \mathbb{P} ciP,称 C n C_{}n Cn n × n n \times n n×n循环矩阵。

取基本循环矩阵为
A = ( 0 1 0 ⋯ 0 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 0 1 1 0 0 ⋯ 0 0 ) A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ \end{pmatrix} A=00011000010000000010
C n C_{n} Cn可以写作
C n = c 0 I + c 1 A 1 + c 2 A 2 + ⋯ + c n − 1 A n − 1 = ∑ i = 0 n − 1 c i A i . C_{n} = c_0 I + c_1 A^1 + c_2 A^2 + \cdots + c_{n-1} A^{n-1} = \sum_{i=0}^{n-1} c_i A^i. Cn=c0I+c1A1+c2A2++cn1An1=i=0n1ciAi.

定理1 数域 P \mathbb{P} P上的 n × n n \times n n×n矩阵 C n = ( C i , j ) C_{n}=(C_{i,j}) Cn=(Ci,j)为循环矩阵的充分必要条件是,当
k = { i − j , i ≥ j i − j + n , i < j k=\begin{cases} i-j, &i \geq j\\ i-j+n, &i < j \end{cases} k={ij,ij+n,iji<j
时, C i , j = c k C_{i,j} = c_k Ci,j=ck,其中 i , j , k = 0 , 1 , 2 , ⋯   , n − 1 i,j,k = 0,1,2,\cdots, n-1 i,j,k=0,1,2,,n1

2.循环矩阵的性质

性质1 基本循环矩阵 A 1 , A 2 , ⋯   , A n A^1, A^2, \cdots, A^n A1,A2,,An是线性无关的。
证明
A 2 = ( 0 1 0 ⋯ 0 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 0 1 1 0 0 ⋯ 0 0 ) ( 0 1 0 ⋯ 0 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 0 1 1 0 0 ⋯ 0 0 ) = ( 0 0 1 ⋯ 0 0 0 0 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 0 0 ⋯ 0 0 0 1 0 ⋯ 0 0 ) A 3 = ( 0 0 0 ⋯ 0 0 0 0 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 1 0 ⋯ 0 0 0 0 1 ⋯ 0 0 ) ⋯ A n = ( 1 0 0 ⋯ 0 0 0 1 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 1 0 0 0 0 ⋯ 0 1 ) = I n \begin{aligned} A^2 &= \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ \end{pmatrix} =\begin{pmatrix} 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \end{pmatrix} \\ A^3 & =\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \end{pmatrix} \\ \cdots \\ A^n &= \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ \end{pmatrix} = I_{n} \end{aligned} A2A3An=0001100001000000001000011000010000000010=00100001100000000000=00000010000100000000=10000100000000100001=In

性质2 任意 n n n阶循环矩阵 C n C_n Cn都可以用基本循环矩阵线性表出,即
C n = c 0 I + c 1 A 1 + c 2 A 2 + ⋯ + c n − 1 A n − 1 = ∑ i = 0 n − 1 c i A i . C_{n} = c_0 I + c_1 A^1 + c_2 A^2 + \cdots + c_{n-1} A^{n-1} = \sum_{i=0}^{n-1} c_i A^i. Cn=c0I+c1A1+c2A2++cn1An1=i=0n1ciAi.

性质2 任意 n n n阶基本循环矩阵 A A A的乘积仍为基本循环矩阵。

定理2 数域 P \mathbb{P} P上的 n × n n \times n n×n循环矩阵按照矩阵的加法乘法构成一个向量空间,基为 A 1 , A 2 , ⋯   , A n A^1, A^2, \cdots, A^n A1,A2,,An,零向量为 A n = I n A^n = I_n An=In,负向量为 − A -A A

性质3 循环矩阵的乘积还是循环矩阵。

证明 B , C B,C B,C都是 n n n阶循环矩阵,用基本循环矩阵表示 B = ∑ i = 1 n b i A i B = \sum_{i=1}^{n}b_i A^i B=i=1nbiAi C = ∑ i = 1 n c i A i C = \sum_{i=1}^{n}c_i A^i C=i=1nciAi,则
B C = ( ∑ i = 1 n b i A i ) ( ∑ i = 1 n c i A i ) = ∑ i = 1 n ∑ j = 1 n b i c j A i A j = ∑ i = 1 , j = 1 n b i c j A ( ( i + j ) m o d    n ) = ∑ k = 1 n ( ∑ i , j = 1 , i + j = k m o d n n b i c j ) A k . \begin{aligned} BC & = \left( \sum_{i=1}^{n}b_i A^i \right) \left( \sum_{i=1}^{n}c_i A^i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i c_j A^i A^j \\ & = \sum_{i=1,j=1}^{n} b_i c_j A^{((i+j) \mod n)} \\ & = \sum_{k=1}^{n} \left( \sum_{ \tiny \begin{array}{l} i,j=1, \\ i+j = k \mod n \end{array} }^{n} b_i c_j \right) A^k. \end{aligned} BC=(i=1nbiAi)(i=1nciAi)=i=1nj=1nbicjAiAj=i=1,j=1nbicjA((i+j)modn)=k=1ni,j=1,i+j=kmodnnbicjAk.

定理3 循环矩阵的伴随矩阵是循环矩阵。

证明 C n C_n Cn n n n阶循环矩阵 C n = ∑ i = 1 n c i A i C_n = \sum_{i=1}^{n}c_i A^i Cn=i=1nciAi,下面分两种情况考虑。

(1),当 C n C_n Cn为可逆矩阵时,考虑线性方程组 C n T x ⃗ = ( ∣ C n ∣ , 0 , ⋯   , 0 ) T C_n^T \vec{x} = (|C_n|,0,\cdots, 0)^T CnTx =(Cn,0,,0)T,因为系数矩阵的行列式 ∣ C n T ∣ = ∣ C n ∣ ≠ 0 |C_n^T| = |C_n| \neq 0 CnT=Cn=0。故方程组存在唯一的解,设为 x ⃗ = ( b 1 , b 2 , ⋯   , b n ) T \vec{x} = (b_1,b_2,\cdots,b_n)^T x =(b1,b2,,bn)T

B = ∑ i = 1 n b i A i B=\sum_{i=1}^{n} b_i A^i B=i=1nbiAi,则
B C = ∑ k = 1 n ( ∑ i , j = 1 , i + j = k m o d n n b i c j ) A k BC = \sum_{k=1}^{n} \left( \sum_{ \tiny \begin{array}{l} i,j=1, \\ i+j = k \mod n \end{array} }^{n} b_i c_j \right) A^k BC=k=1ni,j=1,i+j=kmodnnbicjAk

x ⃗ T C n = ( ∣ C n ∣ , 0 , ⋯   , 0 ) \vec{x}^T C_n = (|C_n|,0,\cdots, 0) x TCn=(Cn,0,,0),对比有 B C n = ∣ C n ∣ I n BC_n = |C_n|I_n BCn=CnIn。从而有 B = ∣ C n ∣ C n − 1 = C n ∗ B=|C_n| C_n^{-1} = C_{n}^{*} B=CnCn1=Cn,显然 B B B为循环矩阵。

(2)当 C n C_n Cn为不可逆矩阵时,考虑 C n − t A C_n-tA CntA, 其行列式为 f ( t ) = det ⁡ ( C − t A ) f(t)=\det(C-tA) f(t)=det(CtA) t t t n n n次多项式,在数域 P \mathbb{P} P至多有 n n n个根,当 t t t大于最大的根 t 0 t_0 t0时, f ( t ) = det ⁡ ( C − t A ) ≠ 0 f(t)=\det(C-tA) \neq 0 f(t)=det(CtA)=0,则矩阵 C n − t A C_n-tA CntA可逆。

再根据(1),可知伴随矩阵 ( C n − t A ) ∗ = ( a i , j ( t ) ) \left( C_n-tA \right)^{*} = \left( a_{i,j}(t) \right) (CntA)=(ai,j(t))为循环矩阵,所以满足循环矩阵的充要条件:
k = { i − j , i ≥ j i − j + n , i < j k = \begin{cases} i-j, &i \geq j\\ i-j+n, &i < j \end{cases} k={ij,ij+n,iji<j
时, C i , j = c k C_{i,j} = c_k Ci,j=ck,有 a i , j ( t ) = a k ( t ) a_{i,j}(t) = a_{k}(t) ai,j(t)=ak(t)

再根据多项式的性质,当 t > t 0 t>t_0 t>t0,上面的多项式都是相等的,则对于整个实轴多项式都相等的,特别当 t = 0 t=0 t=0时,即 ( C n − 0 A ) ∗ = C n ∗ \left( C_n-0A \right)^{*}=C_n^{*} (Cn0A)=Cn为循环矩阵。

定理4 循环矩阵的 逆矩阵是循环矩阵。

3.循环矩阵的逆及特征值

循环矩阵的逆矩阵是循环矩阵,即有
C n − 1 = c i r c b ( b 0 , b 1 , ⋯   , b n − 1 ) , C_n^{-1} = circb(b_0, b_1, \cdots, b_{n-1}), Cn1=circb(b0,b1,,bn1),
其中
b j = 1 n ∑ k = 0 n − 1 λ n − j k [ f ( λ k ) ] − 1 , b 0 = b n , j = 1 , 2 , ⋯   , n . λ k = e 2 k π n i = cos ⁡ 2 k π n + i sin ⁡ 2 k π n , k = 0 , 1 , ⋯   , n − 1. \begin{aligned} b_j &= \frac{1}{n} \sum_{k=0}^{n-1} \lambda_{n-j}^k \left[ f(\lambda_{k}) \right]^{-1} , \qquad b_0 = b_n, \qquad j=1,2,\cdots,n. \\ \lambda_{k} &= e^{\frac{2k \pi}{n}i} = \cos \frac{2k \pi}{n} + i \sin \frac{2k \pi}{n}, \qquad k=0,1,\cdots,n-1. \end{aligned} bjλk=n1k=0n1λnjk[f(λk)]1,b0=bn,j=1,2,,n.=en2kπi=cosn2kπ+isinn2kπ,k=0,1,,n1.

λ k \lambda_{k} λk n n n次方程 λ n − 1 = 0 \lambda_{n} - 1= 0 λn1=0 n n n n n n次单位根。 f ( x ) = ∑ i = 0 n − 1 c i x i f(x)=\sum_{i=0}^{n-1} c_i x^{i} f(x)=i=0n1cixi,系数 c i c_i ci是循环矩阵第一行的元素。

b j b_j bj可知循环矩阵可逆的条件为 f ( λ k ) ≠ 0 , k = 0 , 1 , ⋯   , n − 1 f(\lambda_{k}) \neq 0, \quad k = 0, 1, \cdots, n-1 f(λk)=0,k=0,1,,n1

根据循环矩阵可以用基本循环矩阵线性表,有 C n = ∑ i = 0 n − 1 c i A i = f ( A ) C_n = \sum_{i=0}^{n-1} c_i A^{i} = f(A) Cn=i=0n1ciAi=f(A)

如果有 A x ⃗ = λ x ⃗ A \vec{x} = \lambda \vec{x} Ax =λx ,则有
A k x ⃗ = A k − 1 ( A x ⃗ ) = A k − 1 λ x ⃗ = λ A k − 1 x ⃗ = ⋯ = λ k x ⃗ A^k \vec{x} = A^{k-1} \left( A \vec{x} \right) = A^{k-1} \lambda \vec{x} = \lambda A^{k-1} \vec{x} = \cdots = \lambda^{k} \vec{x} Akx =Ak1(Ax )=Ak1λx =λAk1x ==λkx
进而有
C n x ⃗ = f ( λ ) x ⃗ . C_n \vec{x} = f(\lambda) \vec{x}. Cnx =f(λ)x .
上式表明,求 C n C_n Cn的特征值 f ( λ ) f(\lambda) f(λ)的问题可转化为求 A A A的特征值,他们有相同的特征向量 x ⃗ \vec{x} x

∣ λ I − A ∣ = ∣ λ − 1 0 ⋯ 0 0 0 λ − 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ λ − 1 − 1 0 0 ⋯ 0 λ ∣ = λ n − 1 = 0 \left| \lambda I - A\right| = \left| \begin{matrix} \lambda & - 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & - 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & - 1 \\ -1 & 0 & 0 & \cdots & 0 & \lambda \\ \end{matrix} \right| = \lambda^n - 1 =0 λIA=λ0011λ00010000λ0001λ=λn1=0

对于特征值 λ k \lambda_{k} λk的特征向量为
x ⃗ k = ( 1 , λ k , λ k 2 , ⋯   , λ k n − 1 ) T , k = 0 , 1 , ⋯   , n − 1 \vec{x}_k = \left( 1, \lambda_{k}, \lambda_{k}^2, \cdots, \lambda_{k}^{n-1} \right)^T, \quad k = 0, 1, \cdots, n-1 x k=(1,λk,λk2,,λkn1)T,k=0,1,,n1

i ≠ j i \neq j i=j时, λ i ≠ λ j \lambda_i \neq \lambda_j λi=λj,因此 C n C_n Cn有完备的特征向量系。将特征向量组成矩阵 P P P
P = ( 1 1 ⋯ 1 λ 0 λ 1 ⋯ λ n − 1 λ 0 2 λ 1 2 ⋯ λ n − 1 2 ⋮ ⋮ ⋱ ⋮ λ 0 n − 1 λ 1 n − 1 ⋯ λ n − 1 n − 1 ) P = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_{0} & \lambda_{1} & \cdots & \lambda_{n-1} \\ \lambda_{0}^{2} & \lambda_{1}^{2} & \cdots & \lambda_{n-1}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{0}^{n-1} & \lambda_{1}^{n-1} & \cdots & \lambda_{n-1}^{n-1} \\ \end{pmatrix} P=1λ0λ02λ0n11λ1λ12λ1n11λn1λn12λn1n1
P − 1 C n P = d i a g ( f ( λ 0 ) , f ( λ 1 ) , ⋯   , f ( λ n − 1 ) ) P^{-1} C_n P = diag(f(\lambda_{0}),f(\lambda_{1}),\cdots, f(\lambda_{n-1})) P1CnP=diag(f(λ0),f(λ1),,f(λn1))

可得结论:在复数域 C \mathbb{C} C上,存在一个可逆矩阵 P P P C \mathbb{C} C上的所有的循环矩阵同时相似对角化。

另外有 c 0 = 1 n ∑ k = 0 n − 1 f ( λ k ) c_0 = \frac{1}{n} \sum_{k=0}^{n-1} f(\lambda_{k}) c0=n1k=0n1f(λk) det ⁡ C n = ∏ k = 0 n − 1 f ( λ k ) \det C_n = \prod_{k=0}^{n-1} f(\lambda_{k}) detCn=k=0n1f(λk)

4.利用循环矩阵求特征值的方法求Jacobi矩阵的特征值

在数值代数研究中,有时候得到如下形式的 n n n阶Jacobi矩阵
J n = ( a d c a d ⋱ ⋱ ⋱ c a d c a d ) J_n = \begin{pmatrix} a & d & & & \\ c & a & d & & \\ & \ddots & \ddots & \ddots & \\ & & c & a & d \\ & & & c & a & d \\ \end{pmatrix} Jn=acdadcacdad
对其添加一行一列,则得到 n + 1 n+1 n+1阶的循环矩阵
c i r c ( a , d , 0 , ⋯   , 0 , c ) = ( a d c c a d 0 ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ d 0 c a d d 0 ⋯ 0 a d ) circ(a,d,0,\cdots, 0, c) = \begin{pmatrix} a & d & & & & c\\ c & a & d & & & 0\\ & \ddots & \ddots & \ddots & & \vdots \\ & & \ddots & \ddots & d & 0\\ & & & c & a & d \\ d & 0 & \cdots & 0 & a & d \\ \end{pmatrix} circ(a,d,0,,0,c)=acdda0dc0daac00dd

这样一来,我们可以使用循环矩阵的某些结果来获得 J n J_n Jn的一些结果。

下面利用循环矩阵求特征值的结果来求 J n J_n Jn的特征值。


c i r c ( a , d , 0 , ⋯   , 0 , c ) = D = a I + d A + c A n − 1 circ(a,d,0,\cdots, 0, c) = D = a I + d A + c A^{n-1} circ(a,d,0,,0,c)=D=aI+dA+cAn1
D = f ( A ) D=f(A) D=f(A),如果 A x ⃗ = λ x ⃗ A \vec{x} = \lambda \vec{x} Ax =λx 则有 D x ⃗ = f ( λ ) x ⃗ D \vec{x} = f(\lambda) \vec{x} Dx =f(λ)x

你可能感兴趣的:(循环矩阵求特征值的方法)