Python3实现单目标粒子群算法(PSO)

关于PSO的基本知识......就说一下算法流程

1) 初始化粒子群;
    随机设置各粒子的位置和速度,默认粒子的初始位置为粒子最优位置,并根据所有粒子最优位置,选取群体最优位置。
2) 判断是否达到迭代次数;
    若没有达到,则跳转到步骤3)。否则,直接输出结果。
3) 更新所有粒子的位置和速度;
4) 计算各粒子的适应度值。
     将粒子当前位置的适应度值与粒子最优位置的适应度值进行比较,决定是否更新粒子最优位置;将所有粒子最优位置的适应度值与群体最优位置的适应度值进行比较,决定是否更新群体最优位置。然后,跳转到步骤2)。

 

直接扔代码......(PS:1.参数动态调节;2.例子是二维的)

 

首先,是一些准备工作...

# Import libs
import numpy as np
import random as rd
import matplotlib.pyplot as plt

# Constant definition
MIN_POS = [-5, -5]                                    # Minimum position of the particle
MAX_POS = [5, 5]                                      # Maximum position of the particle
MIN_SPD = [-0.5, -0.5]                                # Minimum speed of the particle
MAX_SPD = [1, 1]                                      # Maximum speed of the particle
C1_MIN = 0
C1_MAX = 1.5
C2_MIN = 0
C2_MAX = 1.5
W_MAX = 1.4
W_MIN = 0

然后是PSO类

# Class definition
class PSO():
    """
        PSO class
    """

    def __init__(self,iters=100,pcount=50,pdim=2,mode='min'):
        """
            PSO initialization
            ------------------
        """

        self.w = None                                 # Inertia factor
        self.c1 = None                                # Learning factor
        self.c2 = None                                # Learning factor

        self.iters = iters                            # Number of iterations
        self.pcount = pcount                          # Number of particles
        self.pdim = pdim                              # Particle dimension
        self.gbpos = np.array([0.0]*pdim)             # Group optimal position
        
        self.mode = mode                              # The mode of PSO

        self.cur_pos = np.zeros((pcount, pdim))       # Current position of the particle
        self.cur_spd = np.zeros((pcount, pdim))       # Current speed of the particle
        self.bpos = np.zeros((pcount, pdim))          # The optimal position of the particle

        self.trace = []                               # Record the function value of the optimal solution
        

    def init_particles(self):
        """
            init_particles function
            -----------------------
        """

        # Generating particle swarm
        for i in range(self.pcount):
            for j in range(self.pdim):
                self.cur_pos[i,j] = rd.uniform(MIN_POS[j], MAX_POS[j])
                self.cur_spd[i,j] = rd.uniform(MIN_SPD[j], MAX_SPD[j])
                self.bpos[i,j] = self.cur_pos[i,j]

        # Initial group optimal position
        for i in range(self.pcount):
            if self.mode == 'min':
                if self.fitness(self.cur_pos[i]) < self.fitness(self.gbpos):
                    gbpos = self.cur_pos[i]
            elif self.mode == 'max':
                if self.fitness(self.cur_pos[i]) > self.fitness(self.gbpos):
                    gbpos = self.cur_pos[i]

    def fitness(self, x):
        """
            fitness function
            ----------------
            Parameter:
                x : 
        """
        
        # Objective function
        fitval = 5*np.cos(x[0]*x[1])+x[0]*x[1]+x[1]**3   # min
        # Retyrn value
        return fitval

    def adaptive(self, t, p, c1, c2, w):
        """

        """

        #w  = 0.95   #0.9-1.2
        if t == 0:
            c1 = 0
            c2 = 0
            w  = 0.95
        else:
            if self.mode == 'min':
                # c1
                if self.fitness(self.cur_pos[p]) > self.fitness(self.bpos[p]):
                    c1 = C1_MIN + (t/self.iters)*C1_MAX + np.random.uniform(0,0.1)
                elif self.fitness(self.cur_pos[p]) <= self.fitness(self.bpos[p]):
                    c1 = c1
                # c2    
                if self.fitness(self.bpos[p]) > self.fitness(self.gbpos):
                    c2 = C2_MIN + (t/self.iters)*C2_MAX + np.random.uniform(0,0.1)
                elif self.fitness(self.bpos[p]) <= self.fitness(self.gbpos):
                    c2 = c2
                # w
                #c1 = C1_MAX - (C1_MAX-C1_MIN)*(t/self.iters)
                #c2 = C2_MIN + (C2_MAX-C2_MIN)*(t/self.iters)
                w = W_MAX - (W_MAX-W_MIN)*(t/self.iters)
            elif self.mode == 'max':
                pass

        return c1, c2, w

    def update(self, t):
        """
            update function
            ---------------
                Note that :
                    1. Update particle position
                    2. Update particle speed
                    3. Update particle optimal position
                    4. Update group optimal position
        """

        # Part1 : Traverse the particle swarm
        for i in range(self.pcount):
            
            # Dynamic parameters
            self.c1, self.c2, self.w = self.adaptive(t,i,self.c1,self.c2,self.w)
            
            # Calculate the speed after particle iteration
            # Update particle speed
            self.cur_spd[i] = self.w*self.cur_spd[i] \
                              +self.c1*rd.uniform(0,1)*(self.bpos[i]-self.cur_pos[i])\
                              +self.c2*rd.uniform(0,1)*(self.gbpos - self.cur_pos[i])
            for n in range(self.pdim):
                if self.cur_spd[i,n] > MAX_SPD[n]:
                    self.cur_spd[i,n] = MAX_SPD[n]
                elif self.cur_spd[i,n] < MIN_SPD[n]:
                    self.cur_spd[i,n] = MIN_SPD[n]

            # Calculate the position after particle iteration
            # Update particle position 
            self.cur_pos[i] = self.cur_pos[i] + self.cur_spd[i]
            for n in range(self.pdim):
                if self.cur_pos[i,n] > MAX_POS[n]:
                    self.cur_pos[i,n] = MAX_POS[n]
                elif self.cur_pos[i,n] < MIN_POS[n]:
                    self.cur_pos[i,n] = MIN_POS[n]
                
        # Part2 : Update particle optimal position
        for k in range(self.pcount):
            if self.mode == 'min':
                if self.fitness(self.cur_pos[k]) < self.fitness(self.bpos[k]):
                    self.bpos[k] = self.cur_pos[k]
            elif self.mode == 'max':
                if self.fitness(self.cur_pos[k]) > self.fitness(self.bpos[k]):
                    self.bpos[k] = self.cur_pos[k]

        # Part3 : Update group optimal position
        for k in range(self.pcount):
            if self.mode == 'min':
                if self.fitness(self.bpos[k]) < self.fitness(self.gbpos):
                    self.gbpos = self.bpos[k]
            elif self.mode == 'max':
                if self.fitness(self.bpos[k]) > self.fitness(self.gbpos):
                    self.gbpos = self.bpos[k]
 
    def run(self):
        """
            run function
            -------------
        """

        # Initialize the particle swarm
        self.init_particles()

        # Iteration
        for t in range(self.iters):
            # Update all particle information
            self.update(t)
            #
            self.trace.append(self.fitness(self.gbpos))

然后是main...

def main():
    """
        main function
    """

    for i in range(1):
        
        pso = PSO(iters=100,pcount=50,pdim=2, mode='min')
        pso.run()
            
        #
        print('='*40)
        print('= Optimal solution:')
        print('=   x=', pso.gbpos[0])
        print('=   y=', pso.gbpos[1])
        print('= Function value:')
        print('=   f(x,y)=', pso.fitness(pso.gbpos))
        #print(pso.w)
        print('='*40)
        
        #
        plt.plot(pso.trace, 'r')
        title = 'MIN: ' + str(pso.fitness(pso.gbpos))
        plt.title(title)
        plt.xlabel("Number of iterations")
        plt.ylabel("Function values")
        plt.show()
    #
    input('= Press any key to exit...')
    print('='*40)
    exit() 


if __name__ == "__main__":

    main()

最后是计算结果,完美结束!!!

 

Python3实现单目标粒子群算法(PSO)_第1张图片

Python3实现单目标粒子群算法(PSO)_第2张图片

你可能感兴趣的:(智能算法)