【python数据分析】matlabplot基本图标绘制

# kind → line,bar,barh...(折线图,柱状图,柱状图-横...)
# label → 图例标签,Dataframe格式以列名为label
# style → 风格字符串,这里包括了linestyle(-),marker(.),color(g)
# color → 颜色,有color指定时候,以color颜色为准
# alpha → 透明度,0-1
# use_index → 将索引用为刻度标签,默认为True
# rot → 旋转刻度标签,0-360
# grid → 显示网格,一般直接用plt.grid
# xlim,ylim → x,y轴界限
# xticks,yticks → x,y轴刻度值
# figsize → 图像大小
# title → 图名
# legend → 是否显示图例,一般直接用plt.legend()
# 也可以 → plt.plot()

1、由Series生成图标,Series.plot():series的index为横坐标,value为纵坐标

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot(kind='line',
       label = 'cc',
       style = '--g.',
       color = 'pink',
       alpha = 0.8,
       use_index = True,
       rot = 45,
       grid = True,
       ylim = [-50,50],
       yticks = list(range(-50,50,10)),
       figsize = (8,4),
       title = 'test',
       legend = True)
plt.legend()

【python数据分析】matlabplot基本图标绘制_第1张图片
 

2、由Dataframe绘制图标

df = pd.DataFrame(np.random.randn(1000, 3), index=pd.date_range('20190101',periods=1000), columns=list('ABC'))
df = df.cumsum()
df.plot(kind='line',
       style = '--',
       alpha = 0.9,
       use_index = True,
       rot = 45,
       grid = True,
       figsize = (8,4),
       title = 'test',
       legend = True,
       subplots = False,
       colormap = 'pink')

【python数据分析】matlabplot基本图标绘制_第2张图片

3、柱状图

plt.figure(figsize=(10,4))
x = np.arange(10)
y1 = np.random.rand(10)
y2 = -np.random.rand(10)

plt.bar(x,y1,width = 1,facecolor = 'yellowgreen',edgecolor = 'white',yerr = y1*0.1)
plt.bar(x,y2,width = 1,facecolor = 'lightskyblue',edgecolor = 'white',yerr = y2*0.1)
# x,y参数:x,y值
# width:宽度比例
# facecolor柱状图里填充的颜色、edgecolor是边框的颜色
# left-每个柱x轴左边界,bottom-每个柱y轴下边界 → bottom扩展即可化为甘特图 Gantt Chart
# align:决定整个bar图分布,默认left表示默认从左边界开始绘制,center会将图绘制在中间位置
# xerr/yerr :x/y方向error bar

for i,j in zip(x,y1):
    plt.text(i+0.3,j-0.15,'%.2f' % j, color = 'white')
for i,j in zip(x,y2):
    plt.text(i+0.3,j+0.05,'%.2f' % -j, color = 'white')
# 给图添加text
# zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

【python数据分析】matlabplot基本图标绘制_第3张图片

4、饼图

# explode:指定每部分的偏移量
# labels:标签
# colors:颜色
# autopct:饼图上的数据标签显示方式
# pctdistance:每个饼切片的中心和通过autopct生成的文本开始之间的比例
# labeldistance:被画饼标记的直径,默认值:1.1
# shadow:阴影
# startangle:开始角度
# radius:半径
# frame:图框
# counterclock:指定指针方向,顺时针或者逆时针

s = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')
plt.axis('equal')  # 保证长宽相等
plt.pie(s,
       explode = [0.1,0,0,0],
       labels = s.index,
       colors=['r', 'g', 'b', 'c'],
       autopct='%.2f%%',
       pctdistance=0.6,
       labeldistance = 1.2,
       shadow = True,
       startangle=0,
       radius=1.5,
       frame=False)
print(s)

【python数据分析】matlabplot基本图标绘制_第4张图片

你可能感兴趣的:(python)