hyper graph 超图

hyper graph 的基础概念

 

超图数据模型hypergraph data model (HDM)是知识图的基础(GRAKN.AI)

概念(notations):

  • 超图由非空的顶点集和超边集组成(a hypergraph consists of a non-empty set of vertices and a set of hyperedges)
  • 超边是一组有限的顶点集合(通过它们在超边中所扮演的特定角色来区分)(a hyperedge is a finite set of vertices (distinguishable by specific roles they play in that hyperedge))
  • 超边本身也是一个顶点,可以由其他超边缘连接(a hyperedge is also a vertex itself and can be connected by other hyperedges)

 

超图(hyper graph)的边:超边(hyper edge),由一个顶点集合构成,顶点数>=2(a set of vertices),如下图:

 

hyper graph 超图_第1张图片

数学上的定义

假设一个超图H=(X,E),其中:X为顶点集合,E为边的集合,

subhypergraph(子超图):将一个超图H去掉一些顶点(vertices)

其中A是X的子集

 

超图的二部图表示

hyper graph 超图_第2张图片

 

Reduced Hypergraph

 

hyper graph 超图_第3张图片

下图来自文献:Zhou D, Huang J. Learning with hypergraphs: clustering, classification, and embedding[C]// International Conference on Neural Information Processing Systems. MIT Press, 2006:1601-1608.

hyper graph 超图_第4张图片

 


 

参考文献:

https://www.youtube.com/watch?v=Oy2nNPJ0oEI,

https://en.wikipedia.org/wiki/Hypergraph,

https://blog.grakn.ai/modelling-data-with-hypergraphs-edff1e12edf0,

Zhou D, Huang J. Learning with hypergraphs: clustering, classification, and embedding[C]// International Conference on Neural Information Processing Systems. MIT Press, 2006:1601-1608.

 

 

你可能感兴趣的:(机器学习)