pytorch0.4 mnist样例程序gpu版+t-SNE

这里写自定义目录标题

  • mnist简介
  • pytorch简介
  • 代码

mnist简介

mnist数据集为手写数字识别的数据集,训练集60000张2828,测试集10000张2828,为数字0~9。

pytorch简介

pytorch为近几年兴起的训练架构,继承自torch,灵活易用,被科研工作者所喜爱。c++api还没有完善完毕。

代码

代码部分参考caffe的mnist样例实现,增加了几层卷积,增加了网络的表达能力,同时,参考了几位大神的代码,再次表示感谢,此代码训练完毕后,可以达到99%以上准确度,用t-SNE用于事实显示分类情况。pytorch0.4 mnist样例程序gpu版+t-SNE_第1张图片
代码为GPU版

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import os
import matplotlib.pyplot as plt
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
#torch.cuda.set_device(0)
# Training settings
batch_size_train = 64
batch_size_test = 500

# MNIST Dataset
# MNIST数据集已经集成在pytorch datasets中,可以直接调用


train_dataset = datasets.MNIST(root='./data/',
                               train=True,
                               transform=transforms.ToTensor(),
                               download=True)

test_dataset = datasets.MNIST(root='./data/',
                              train=False,
                              transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size_train,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size_test,
                                          shuffle=False)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 输入1通道,输出10通道,kernel 5*5
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=40, kernel_size=3,stride=1,padding=1,dilation=1,groups=1,bias=True)

        self.conv2 = nn.Conv2d(40, 80, 3,1,1,1,1,True)
        self.conv3 = nn.Conv2d(80,80,3,1,1,1,1,True)
        self.conv4 = nn.Conv2d(80, 80, 3,1,1,1,1,True)
        self.conv5 = nn.Conv2d(80,80,3,1,1,1,1,True)

        self.mp = nn.MaxPool2d(2)

        self.fc1 = nn.Linear(3920, 500)#(in_features, out_features)
        self.fc2 = nn.Linear(500,10)

    def forward(self, x):
        in_size = x.size(0)
        x=self.conv1(x)
        x=F.relu(x)
        x=self.conv2(x)
        x=F.relu(x)
        x=self.conv3(x)
        x=F.relu(x)
        x=self.mp(x)
        x=self.conv4(x)
        x=self.conv5(x)
        x=self.mp(x)
        x=x.view(in_size,-1)
        x=self.fc1(x)
        x=F.relu(x)
        out=self.fc2(x)
        #return out
        return F.log_softmax(out),x
model = Net()
model = model.cuda()

def plot_with_labels(lowDWeights, labels):
    plt.cla()
    X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
    for x, y, s in zip(X, Y, labels):
        c = cm.rainbow(int(255 * s / 9));
        plt.text(x, y, s, backgroundcolor=c, fontsize=9)
    plt.xlim(X.min(), X.max());
    plt.ylim(Y.min(), Y.max());
    plt.title('Visualize last layer');
    plt.show();
    plt.pause(0.01)


optimizer =optim.Adam([ {'params': model.conv1.weight}, {'params': model.conv1.bias, 'lr': 0.002,'weight_decay': 0 },
                          {'params': model.conv2.weight}, {'params': model.conv2.bias, 'lr': 0.002,'weight_decay': 0 },
                          {'params': model.fc1.weight}, {'params': model.fc1.bias, 'lr': 0.002,'weight_decay': 0 },
                          {'params': model.fc2.weight}, {'params': model.fc2.bias, 'lr': 0.002,'weight_decay': 0 },
                          {'params': model.conv3.weight}, {'params': model.conv3.bias, 'lr': 0.002,'weight_decay': 0 },
                          {'params': model.conv4.weight}, {'params': model.conv4.bias, 'lr': 0.002,'weight_decay': 0 },
                          {'params': model.conv5.weight}, {'params': model.conv5.bias, 'lr': 0.002,'weight_decay': 0 },], lr=0.001, weight_decay=0.0001)

loss_function = nn.CrossEntropyLoss()
def train(epoch):
    for batch_idx, (data_o, target_o) in enumerate(train_loader):#batch_idx是enumerate()函数自带的索引,从0开始
        # data.size():[64, 1, 28, 28]
        # target.size():[64]

        data = Variable(data_o, requires_grad=False)
        target = Variable(target_o, requires_grad=False)
        data=data.cuda()
        target=target.cuda()

        output ,_= model(data)
        #output:64*10


        loss = F.nll_loss(output, target)
        #loss = loss_function(output, target)

        if batch_idx % 200 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))

        optimizer.zero_grad()   # 所有参数的梯度清零
        loss.backward()         #即反向传播求梯度
        optimizer.step()        #调用optimizer进行梯度下降更新参数
from matplotlib import cm

try:
    from sklearn.manifold import TSNE; HAS_SK = True
except:
    HAS_SK = False; print('Please install sklearn for layer visualization')

def test():
    test_loss = 0
    correct = 0
    plt.ion()
    for data_o, target_o in test_loader:
        data, target = Variable(data_o, volatile=True), Variable(target_o)
        data=data.cuda()
        target=target.cuda()

        output,last_layer = model(data)
        # sum up batch loss
        #test_loss = loss_function(output, target).data[0]
        test_loss += F.nll_loss(output, target, size_average=False).data[0]

        # get the index of the max log-probability
        pred = output.data.max(1, keepdim=True)[1]
        #print(pred)
        correct += pred.eq(target.data.view_as(pred)).sum()

        tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
        plot_only = 500
        low_dim_embs = tsne.fit_transform(last_layer.cpu().data.numpy()[:plot_only, :])
        labels = target.cpu().numpy()[:plot_only]
        plot_with_labels(low_dim_embs, labels)

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


    plt.ioff()


for epoch in range(1, 21):
    train(epoch)
    test()

你可能感兴趣的:(pytorch)