Linux 0.11下信号量的实现和应用(李治军操作系统实验6)

生产者-消费者问题

从一个实际的问题:生产者与消费者出发,谈一谈为什么要有信号量?信号量用来做什么?

  • 为什么要有信号量?
    对于生产者来说,当缓冲区满,也就是空闲缓冲区个数为0时,此时生产者不能继续向缓冲区写数,必须等待,直到有消费者从满缓冲区取走数后,再次有了空闲缓冲区,生产者才能向缓冲区写数。
    对于消费者来说,当缓冲区空时,此时没有数可以被取走,消费者必须等待,直到有生产者向缓冲区写数后,消费者才能取数。并且如果当缓冲区空时,先后有多个消费者均想从缓冲区取数,那么它们均需要等待,此时需要记录下等待的消费者的个数,以便缓冲区有数可取后,能将所有等待的消费者唤醒,确保请求取数的消费者最终都能取到数。
    也就是说,当多个进程需要协同合作时,需要根据某个信息,判断当前进程是否需要停下来等待;同时,其他进程需要根据这个信息判断是否有进程在等待,或者有几个进程在等待,以决定是否需要唤醒等待的进程。而这个信息,就是信号量。

  • 信号量用来做什么?
    设有一整形变量sem,作为一个信号量。此时缓冲区为空,sem=0。
    消费者C1请求从缓冲区取数,不能取到,睡眠等待。sem=-1<0,表示有一个进程因缺资源而等待。
    消费者C2也请求从缓冲区取数,睡眠等待。sem=-2<0,表示有两个进程因缺资源而等待。
    生产者P往缓冲区写入一个数,sem=sem+1=-1<=0,并唤醒等待队列的头进程C1,C1处于就绪态,C2仍处于睡眠等待。
    生产者P继续往缓冲区写入一个数,sem=0<=0,并唤醒C2,C1、C2就处于就绪状态。
    由此可见,通过判断sem的值以及改变sem的值,就保证了多进程合作的合理有序的推进,这就是信号量的作用。

实现信号量

信号量有什么组成?
1、需要有一个整形变量value,用作进程同步。
2、需要有一个PCB指针,指向睡眠的进程队列。
3、需要有一个名字来表示这个结构的信号量。
同时,由于该value的值是所有进程都可以看到和访问的共享变量,所以必须在内核中定义;同样,这个名字的信号量也是可供所有进程访问的,必须在内核中定义;同时,又要操作内核中的数据结构:进程控制块PCB,所以信号量一定要在内核中定义,而且必须是全局变量。由于信号量要定义在内核中,所以和信号量相关的操作函数也必须做成系统调用,还是那句话:系统调用是应用程序访问内核的唯一方法。

和信号量相关的函数

Linux在0.11版还没有实现信号量,我们可以先弄一套缩水版的类POSIX信号量,它的函数原型和标准并不完全相同,而且只包含如下系统调用:

sem_t *sem_open(const char  *name, unsigned int value);
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_unlink(const char *name);

sem_t是信号量类型,根据实现的需要自己定义。

信号量的保护

使用信号量还需要注意一个问题,这个问题是由多进程的调度引起的。当一个进程正在修改信号量的值时,由于时间片耗完,引发调度,该修改信号量的进程被切换出去,而得到CPU使用权的新进程也开始修改此信号量,那么该信号量的值就很有可能发生错误,如果信号量的值出错了,那么进程的同步也会出错。所以在执行修改信号量的代码时,必须加以保护,保证在修改过程中其他进程不能修改同一个信号量的值。也就是说,当一个进程在修改信号量时,由于某种原因引发调度,该进程被切换出去,新的进程如果也想修改该信号量,是不能操作的,必须等待,直到原来修改该信号量的进程完成修改,其他进程才能修改此信号量。修改信号量的代码一次只允许一个进程执行,这样的代码称为临界区,所以信号量的保护,又称临界区保护。
实现临界区的保护有几种不同的方法,在Linux 0.11上比较简单的方法是通过开、关中断来阻止时钟中断,从而避免因时间片耗完引发的调度,来实现信号量的保护。但是开关中断的方法,只适合单CPU的情况,对于多CPU的情况,不适用。Linux 0.11就是单CPU,可以使用这种方法。

信号量的代码实现

1、sem_open()
原型:sem_t *sem_open(const char *name, unsigned int value)
功能:创建一个信号量,或打开一个已经存在的信号量
参数:name,信号量的名字。不同的进程可以通过同样的name而共享同一个信号量。如果该信号量不存在,就创建新的名为name的信号量;如果存在,就打开已经存在的名为name的信号量。
value,信号量的初值,仅当新建信号量时,此参数才有效,其余情况下它被忽略。
返回值。当成功时,返回值是该信号量的唯一标识(比如,在内核的地址、ID等)。如失败,返回值是NULL。

由于要做成系统调用,所以会穿插讲解系统调用的相关知识。
首先,在linux-0.11/kernel目录下,新建实现信号量函数的源代码文件sem.c。同时,在linux-0.11/include/linux目录下新建sem.h,定义信号量的数据结构。
linux-0.11/include/linux/sem.h

#ifndef _SEM_H
#define _SEM_H
#include 
#define SEMTABLE_LEN    20
#define SEM_NAME_LEN    20
typedef struct semaphore{
    char name[SEM_NAME_LEN];
    int value;
    struct task_struct *queue;
} sem_t;
extern sem_t semtable[SEMTABLE_LEN];
#endif

由于sem_open()的第一个参数name,传入的是应用程序所在地址空间的逻辑地址,在内核中如果直接访问这个地址,访问到的是内核空间中的数据,不会是用户空间的。所以要用get_fs_byte()函数获取用户空间的数据。get_fs_byte()函数的功能是获得一个字节的用户空间中的数据。同样,sem_unlink()函数的参数name也要进行相同的处理。

2、sem_unlink()
原型:int sem_unlink(const char *name)
功能:删除名为name的信号量。
返回值:返回0表示成功,返回-1表示失败
sem_wait()
原型:int sem_wait(sem_t *sem)
功能:信号量的P原子操作(检查信号量是不是为负值,如果是,则停下来睡眠等待,如果不是,则向下执行)。
返回值:返回0表示成功,返回-1表示失败。

3、sem_post()
原型:int sem_post(sem_t *sem)
功能:信号量的V原子操作(检查信号量的值是不是为0,如果是,表示有进程在睡眠等待,则唤醒队首进程,如果不是,向下执行)。
返回值:返回0表示成功,返回-1表示失败。

关于sem_wait()和sem_post()

我们可以利用linux 0.11提供的函数sleep_on()实现进程的睡眠,用wake_up()实现进程的唤醒。
但是,sleep_on()比较难以理解。我们先看下sleep_on()的源码。

void sleep_on(struct task_struct **p)
{
    struct task_struct *tmp;

    if (!p)
        return;
    if (current == &(init_task.task))
        panic("task[0] trying to sleep");
    tmp = *p;
    *p = current;
    current->state = TASK_UNINTERRUPTIBLE;
    schedule();
    if (tmp)
        tmp->state=0;
}

还拿生产者和消费者的例子来说,依然是有一个生产者和N个消费者,目前缓冲区为空,没有数可取。
1、消费者C1请求取数,调用sleep_on(&sem->queue)。此时,tmp指向NULL,p指向C1,调用schedule(),让出CPU的使用权。此时,信号量sem处等待队列的情况如下:
Linux 0.11下信号量的实现和应用(李治军操作系统实验6)_第1张图片
由于tmp是进程C1调用sleep_on()函数时申请的局部变量,所以会保存在C1运行到sleep_on()函数中时C1的内核栈中,只要进程C1还没有从sleep_on()函数中退出,tmp就会一直保存在C1的内核栈中。而进程C1是在sleep_on()中调用schedule()切出去的,所以在C1睡眠期间,tmp自然会保存在C1的内核栈中。这一点对于理解sleep_on()上如何形成隐式的等待队列很重要。

2、消费者C2请求取数,调用sleep_on(&sem->queue)。此时,信号量sem处的等待队列如下:
Linux 0.11下信号量的实现和应用(李治军操作系统实验6)_第2张图片

从这里就可以看到隐式的等待队列已经形成了。由于进程C2也会由于调用schedule()函数在sleep_on()函数中睡眠,所以进程C2内核栈上的tmp便指向之前的等待队列的队首,也就是C1,通过C2的内核栈便可以找到睡眠的进程C1。这样就可以找到在信号量sem处睡眠的所有进程。

我们在看下唤醒函数wake_up():

void wake_up(struct task_struct **p)
{
    if (p && *p) {
        (**p).state=0;
        *p=NULL;
    }
}

从中我们可以看到唤醒函数wake_up()负责唤醒的是等待队列队首的进程。
当队首进程C2被唤醒时,从schedule()函数退出,执行语句:

if (tmp)
    tmp->state=0;

会将内核栈上由tmp指向的进程C1唤醒,如果进程C1的tmp还指向其他睡眠的进程,当C1被调度执行时,会将其tmp指向的进程唤醒,这样只要执行一次wake_up()操作,就可以依次将所有等待在信号量sem处的睡眠进程唤醒。

sem_wait()和sem_post()函数的代码实现

由于我们要调用sleep_on()实现进程的睡眠,调用wake_up()实现进程的唤醒,我们在上面已经讲清楚了sleep_on()和wake_up()的工作机制,接下来,便可以具体实现sem_wait()和sem_post()函数了。

1、sem_wait()的实现
考虑到sleep_on()会形成一个隐式的等待队列,而wake_up()只要唤醒了等待队列的头结点,就可以依靠sleep_on()内部的判断语句,实现依次唤醒全部的等待进程。所以,sem_wait()的代码实现,必须考虑到这个情况。
参考linux 0.11内部的代码,对于进程是否需要等待的判断,不能用简单的if语句,而应该用while()语句,假设现在sem=-1,生产者往缓冲区写入了一个数,sem=0<=0,此时应该将等待队列队首的进程唤醒。当被唤醒的队首进程再次调度执行,从sleep_on()函数退出,不会再执行if判断,而直接从if语句退出,继续向下执行。而等待队列后面被唤醒的进程随后也会被调度执行,同样也不会执行if判断,退出if语句,继续向下执行,这显然是不应该的。因为生产者只往缓冲区写入了一个数,被等待队列的队首进程取走了,由于等待队列的队首进程已经取走了那个数,它应该已经将sem修改为sem=-1,其他等待的进程应该再次执行if判断,由于sem=-1<0,会继续睡眠。要让其他等待进程再次执行时,要重新进行判断,所以不能是if语句了,必须是while()语句才可以。
下面是我第一次实现sem_wait()的代码:

int sys_sem_wait(sem_t *sem)
{
    cli();
    sem->value--;
    while( sem->value < 0 )
        sleep_on(&(sem->queue))
    sti();
    return 0;
}

但是没有考虑到有一种特殊的信号量:互斥信号量。比如要读写一个文件,一次只能允许一个进程读写,当一个进程要读写该文件时,需要先执行sem_wait(file),此后在该进程读写文件期间,若有其他进程也要读写该文件,则执行流程分析如下:

进程P1申请读写该文件,value=-1,sleep_on(&file->queue)。
进程P2申请读写该文件,value=-2,sleep_on(&file->queue)。
原来读写该文件的进程读写完毕,置value=-1,并唤醒等待队列的队首进程P2。
进程P2再次执行,唤醒进程P1,此时执行while()判断,不能跳出while()判断,继续睡眠等待。此时文件并没有被占用,P2完全可以读写该文件,所以程序运行出错了。出错原因在于,修改信号量的语句,必须放在while()判断的后面,因为执行while()判断,进程有可能睡眠,而这种情况下,是不需要记录有多少个进程在睡眠的,因为sleep_on()函数形成的隐式的等待队列已经记录下了进程的等待情况。
正确的sem_wait()代码如下:

int sys_sem_wait(sem_t *sem)
{
    cli();
    while( sem->value <= 0 )        //
        sleep_on(&(sem->queue));    //这两条语句顺序不能颠倒,很重要,是关于互斥信号量能不
    sem->value--;               //能正确工作的!!!
    sti();
    return 0;
}

2、sem_post()的实现
sem_post的实现必须结合sem_wait()的实现情况。
还拿生产者和消费者的例子来分析。当前缓冲区为空,没有数可取,value=0。

消费者C1执行sem_wait(),value=0,sleep_on(&queue)。
消费者C2执行sem_wait(),value=0,sleep_on(&queue)。等待队列的情况如下:

生产者执行sem_post(),value=1,wake_up(&queue),唤醒消费者C2。队列的情况如下:

生产者再次执行sem_post(),value=2,wake_up(&queue)相当于wake_up(NULL)。队列情况如上。
消费者C2再次执行,唤醒C1,跳出while(),value=1,继续向下执行。
消费者C1再次执行,跳出while(),value=0,继续向下执行。
由此可以看出,sem_post()里面唤醒进程的判断条件是:value<=1。

sem_post的实现代码如下:

int sys_sem_post(sem_t *sem)
{
    cli();
    sem->value++;
    if( (sem->value) <= 1)
        wake_up(&(sem->queue));
    sti();
    return 0;
}

信号量的完整代码
linux-0.11/kernel/sem.c

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
//#include 

sem_t semtable[SEMTABLE_LEN];
int cnt = 0;

sem_t *sys_sem_open(const char *name,unsigned int value)
{
    char kernelname[100];   /* 应该足够大了 */
    int isExist = 0;
    int i=0;
    int name_cnt=0;
    while( get_fs_byte(name+name_cnt) != '\0')
    name_cnt++;
    if(name_cnt>SEM_NAME_LEN)
    return NULL;
    for(i=0;ivalue <= 0 )        //
        sleep_on(&(sem->queue));    //这两条语句顺序不能颠倒,很重要,是关于互斥信号量能不
    sem->value--;               //能正确工作的!!!
    sti();
    return 0;
}
int sys_sem_post(sem_t *sem)
{
    cli();
    sem->value++;
    if( (sem->value) <= 1)
        wake_up(&(sem->queue));
    sti();
    return 0;
}

int sys_sem_unlink(const char *name)
{
    char kernelname[100];   /* 应该足够大了 */
    int isExist = 0;
    int i=0;
    int name_cnt=0;
    while( get_fs_byte(name+name_cnt) != '\0')
            name_cnt++;
    if(name_cnt>SEM_NAME_LEN)
            return NULL;
    for(i=0;i

实现信号量的系统调用

应用程序包含的宏定义和头文件
由于系统调用是借助内嵌汇编_syscall实现的,而_syscall的内嵌汇编实现是在linux-0.11/include/unistd.h中,所以必须包含#include 这个头文件,另外由于_syscall的内嵌汇编实现是包含在一个条件编译里面,所以必须包含这样一个宏定义#define LIBRARY

1、修改unistd.h
添加我们新增的系统调用的编号。
添加的代码如下:

#define __NR_sem_open   72  /* !!! */
#define __NR_sem_wait   73
#define __NR_sem_post   74
#define __NR_sem_unlink 75

2、修改system_call.s
由于新增了4个系统调用,所以需要修改总的系统调用的和值。
修改代码如下:

nr_system_calls = 76    /* !!! */

3、修改sys.h
要在linux-0.11/include/linux/sys.h中,声明这4个新增的函数。
修改代码如下:

extern int sys_sem_open();
extern int sys_sem_wait();
extern int sys_sem_post();
extern int sys_sem_unlink();

fn_ptr sys_call_table[] = { sys_setup, sys_exit, sys_fork, sys_read,
sys_write, sys_open, sys_close, sys_waitpid, sys_creat, sys_link,
sys_unlink, sys_execve, sys_chdir, sys_time, sys_mknod, sys_chmod,
sys_chown, sys_break, sys_stat, sys_lseek, sys_getpid, sys_mount,
sys_umount, sys_setuid, sys_getuid, sys_stime, sys_ptrace,  sys_alarm,
sys_fstat, sys_pause, sys_utime, sys_stty, sys_gtty, sys_access,
sys_nice, sys_ftime, sys_sync, sys_kill, sys_rename, sys_mkdir,
sys_rmdir, sys_dup, sys_pipe, sys_times, sys_prof, sys_brk,     sys_setgid,
sys_getgid, sys_signal, sys_geteuid, sys_getegid, sys_acct,     sys_phys,
sys_lock, sys_ioctl, sys_fcntl, sys_mpx, sys_setpgid, sys_ulimit,
sys_uname, sys_umask, sys_chroot, sys_ustat, sys_dup2, sys_getppid,
sys_getpgrp, sys_setsid, sys_sigaction, sys_sgetmask, sys_ssetmask,
sys_setreuid,sys_setregid,sys_sem_open,sys_sem_wait,sys_sem_post,sys_sem_unlink };

4、修改linux-0.11/kernel目录下的Makefile
修改代码如下:

......
OBJS  = sched.o system_call.o traps.o asm.o fork.o \
panic.o printk.o vsprintf.o sys.o exit.o \
signal.o mktime.o sem.o
......

###Dependencies:

sem.s sem.o: sem.c ../include/linux/sem.h ../include/linux/kernel.h \
../include/unistd.h

在0.11环境下的/usr/include目录下,将修改过的unistd.h文件拷贝覆盖那里原有的unistd.h文件。

5、基本要求

1、 建立一个生产者进程,N个消费者进程( N>1 )
2、用文件建立一个共享缓冲区
3、生产者进程依次向缓冲区写入整数0,1,2,…,M,M>=500
4、消费者进程从缓冲区读数,每次读一个,并将读出的数字从缓冲区删除,然后将本进程ID和+ 数字输出到标准输出
5、缓冲区同时最多只能保存10个数

1)文件IO函数
由于要用文件建立一个共享缓冲区,同时生产者要往文件中写数,消费者要从文件中读数,所以要用到open()、read()、write()、lseek()、close()这些文件IO系统调用。
应用程序实现的难点在于,消费者进程每次读一个数,要将读出的数字从缓冲区删除,这几个文件IO系统调用函数中,并没有可以删除一个数字的函数。解决办法是,当消费者进程要从缓冲区读数时,首先调用lseek()系统调用获取到目前文件指针的位置,保存生产者目前写文件的位置。由于被消费者进程读过的数都被删除了,所以同时最多只能保存10个数的缓冲区已有的数,一定是消费者进程未读的,也就是说每次消费者要从缓冲区读数时,要读的数一定是缓冲区的第一个数。这样,让消费者进程每次都从缓冲区读10个数出来,取读出的10个数中的第一个数送标准输出显示,再将后面的9个数再次写入到缓冲区中,这样,就可以做到删除读出的那个数。最后,再调用lseek()系统调用将文件指针定位到之前保存的文件指针减1的位置,这样,生产者进程再次写缓冲区时,也能正确定位删除了一个数字的缓冲区的写位置。

2)终端也是临界资源

用printf()向终端输出信息是很自然的事情,但当多个进程同时输出时,终端也成为了临界资源,需要做好互斥保护,否则输出的信息可能错乱。
另外,printf()之后,信息只是保存在输出缓冲区内,还没有真正送到终端上,这也可能造成输出信息时序不一致。用fflush(stdout)可以确保数据送到终端。

3)伪代码描述:

Producer()
{
    生产一个产品item;
    P(Empty);
    P(Mutex);
    将item放到空闲缓存中;
    V(Mutex);
    V(Full);
}

Consumer()
{
    P(Full);  
    P(Mutex);  
    从缓存区取出一个赋值给item;
    V(Mutex);
    V(Empty);
    消费产品item;
} 

5)新建pc.c文件,代码如下:

#define __LIBRARY__
#include 
#include 
#include 
#include 
#include 
#include 
#include 

_syscall2(sem_t *,sem_open,const char *,name,unsigned int,value)
_syscall1(int,sem_wait,sem_t *,sem)
_syscall1(int,sem_post,sem_t *,sem)
_syscall1(int,sem_unlink,const char *,name)

const char *FILENAME = "/usr/root/buffer_file";    /* 消费生产的产品存放的缓冲文件的路径 */
const int NR_CONSUMERS = 5;                        /* 消费者的数量 */
const int NR_ITEMS = 50;                        /* 产品的最大量 */
const int BUFFER_SIZE = 10;                        /* 缓冲区大小,表示可同时存在的产品数量 */
sem_t *metux, *full, *empty;                    /* 3个信号量 */
unsigned int item_pro, item_used;                /* 刚生产的产品号;刚消费的产品号 */
int fi, fo;                                        /* 供生产者写入或消费者读取的缓冲文件的句柄 */


int main(int argc, char *argv[])
{
    char *filename;
    int pid;
    int i;

    filename = argc > 1 ? argv[1] : FILENAME;
    /* O_TRUNC 表示:当文件以只读或只写打开时,若文件存在,则将其长度截为0(即清空文件)
     * 0222 和 0444 分别表示文件只写和只读(前面的0是八进制标识)
     */
    fi = open(filename, O_CREAT| O_TRUNC| O_WRONLY, 0222);    /* 以只写方式打开文件给生产者写入产品编号 */
    fo = open(filename, O_TRUNC| O_RDONLY, 0444);            /* 以只读方式打开文件给消费者读出产品编号 */

    metux = sem_open("METUX", 1);    /* 互斥信号量,防止生产消费同时进行 */
    full = sem_open("FULL", 0);        /* 产品剩余信号量,大于0则可消费 */
    empty = sem_open("EMPTY", BUFFER_SIZE);    /* 空信号量,它与产品剩余信号量此消彼长,大于0时生产者才能继续生产 */

    item_pro = 0;

    if ((pid = fork()))    /* 父进程用来执行消费者动作 */
    {
        printf("pid %d:\tproducer created....\n", pid);
        /* printf()输出的信息会先保存到输出缓冲区,并没有马上输出到标准输出(通常为终端控制台)。
         * 为避免偶然因素的影响,我们每次printf()都调用一下stdio.h中的fflush(stdout)
         * 来确保将输出立刻输出到标准输出。
         */
        fflush(stdout);

        while (item_pro <= NR_ITEMS)    /* 生产完所需产品 */
        {
            sem_wait(empty);
            sem_wait(metux);

            /* 生产完一轮产品(文件缓冲区只能容纳BUFFER_SIZE个产品编号)后
             * 将缓冲文件的位置指针重新定位到文件首部。
             */
            if(!(item_pro % BUFFER_SIZE))
                lseek(fi, 0, 0);

            write(fi, (char *) &item_pro, sizeof(item_pro));        /* 写入产品编号 */
            printf("pid %d:\tproduces item %d\n", pid, item_pro);
            fflush(stdout);
            item_pro++;

            sem_post(full);        /* 唤醒消费者进程 */
            sem_post(metux);
        }
    }
    else    /* 子进程来创建消费者 */
    {
        i = NR_CONSUMERS;
        while(i--)
        {
            if(!(pid=fork()))    /* 创建i个消费者进程 */
            {
                pid = getpid();
                printf("pid %d:\tconsumer %d created....\n", pid, NR_CONSUMERS-i);
                fflush(stdout);

                while(1)
                {
                    sem_wait(full);
                    sem_wait(metux);

                    /* read()读到文件末尾时返回0,将文件的位置指针重新定位到文件首部 */
                    if(!read(fo, (char *)&item_used, sizeof(item_used)))
                    {
                        lseek(fo, 0, 0);
                        read(fo, (char *)&item_used, sizeof(item_used));
                    }

                    printf("pid %d:\tconsumer %d consumes item %d\n", pid, NR_CONSUMERS-i+1, item_used);
                    fflush(stdout);

                    sem_post(empty);    /* 唤醒生产者进程 */
                    sem_post(metux);

                    if(item_used == NR_ITEMS)    /* 如果已经消费完最后一个商品,则结束 */
                        goto OK;
                }
            }
        }
    }
    OK:
        close(fi);
        close(fo);
        return 0;
  }

6)我们先将虚拟硬盘挂载,将文件pc.c拷贝到虚拟硬盘下:

cd workspace/oslab/
sudo ./mount-hdc
cp pc.c hdc/usr/root/

7)编译运行linux-0.11:

cd linux-0.11
make
../run

8)在linux-0.11中,编译运行pc.c:

gcc -o pc pc.c
./pc > sem_output    # 这里我将输出重定向到文件sem_output,因为输出的内容比较多,而linux-0.11终端不能滚屏

一定要记得把修改的数据写入磁盘:

sync

9)关闭linux-0.11,挂载虚拟磁盘,查看我们的文件:

cd ..
sudo ./mount-hdc
sudo less hdc/usr/root/sem_output

回答问题

实验的设计者在第一次编写生产者——消费者程序的时候,是这么做的:

Producer()
{
    P(Mutex);  //互斥信号量
    生产一个产品item;
    P(Empty);  //空闲缓存资源
    将item放到空闲缓存中;
    V(Full);  //产品资源
    V(Mutex);
}

Consumer()
{
    P(Mutex);  
    P(Full);  
    从缓存区取出一个赋值给item;
    V(Empty);
    消费产品item;
    V(Mutex);
} 

这样可行吗?如果可行,那么它和标准解法在执行效果上会有什么不同?如果不可行,那么它有什么问题使它不可行?

A:不可行。

1、假设Producer刚生产完一件商品,释放了Mutex,Mutex为1,此时缓存区满了,Empty为0;
2、然后OS执行调度,若被Producer拿到CPU,它拿到Mutex,使Mutex为0,而Empty为0,Producer让出CPU,等待Consumer执行V(Empty);
3、而Consumer拿到CPU后,却要等待Producer执行V(Mutex);
4、两者相互持有对方需要的资源,造成死锁。

你可能感兴趣的:(操作系统)