torch中的几种乘法。torch.mm, torch.mul, torch.matmul

一、点乘

点乘都是broadcast的,可以用torch.mul(a, b)实现,也可以直接用*实现。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
        [2.],
        [3.]])
>>> torch.mul(a, b)
tensor([[1., 1., 1., 1.],
        [2., 2., 2., 2.],
        [3., 3., 3., 3.]])

当a, b维度不一致时,会自动填充到相同维度相点乘。

二、矩阵乘

矩阵相乘有torch.mm和torch.matmul两个函数。其中前一个是针对二维矩阵,后一个是高维。当torch.mm用于大于二维时将报错。

>>> a = torch.ones(3,4)
>>> b = torch.ones(4,2)
>>> torch.mm(a, b)
tensor([[4., 4.],
        [4., 4.],
        [4., 4.]])
>>> a = torch.ones(3,4)
>>> b = torch.ones(5,4,2)
>>> torch.matmul(a, b).shape
torch.Size([5, 3, 2])
>>> a = torch.ones(5,4,2)
>>> b = torch.ones(5,2,3)
>>> torch.matmul(a, b).shape
torch.Size([5, 4, 3])
>>> a = torch.ones(5,4,2)
>>> b = torch.ones(5,2,3)
>>> torch.matmul(b, a).shape
报错。

你可能感兴趣的:(torch)