Lucene介绍与使用

1、了解搜索技术

1.1 什么是搜索

简单的说,搜索就是搜寻、查找,在IT行业中就是指用户输入关键字,通过相应的算法,查询并返回用户所需要的信息。

1.2 普通的数据库搜索

类似:select * from 表名 where 字段名 like ‘%关键字%’

例如:select * from article where content like ’%here%’

结果: where here shere

1.3 新的业务需求

比如,用户在百度文本框中输入,“吃饭睡觉写程序”,会出现的以下结果:

Lucene介绍与使用_第1张图片

从结果可以看出,百度搜索具备以下明显特点:

1、即使在相关结果数量接近500万时,也能快速得出结果。

2、搜索的结果不仅仅局限于完整的“吃饭睡觉写程序”这一短语,而是将此短语拆分成,“写程序”,“吃饭”,“睡觉”,“程序”等关键字。

3、对拆分后的搜索关键字进行标红显示。

4、…

问题:上述功能,使用大家以前学过的数据库搜索能够方便实现吗?

1.4 普通的数据库搜索的缺陷

类似:select * from 表名 where 字段名 like ‘%关键字%’

例如:select * from article where content like ’%here%’

结果: where here shere

1、因为没有通过高效的索引方式,所以查询的速度在大量数据的情况下是很慢。

2、搜索效果比较差,只能对用户输入的完整关键字首尾位进行模糊匹配。用户搜索的结果误多输入一个字符,可能就导致查询出的结果远离用户的预期。

2、 搜索技术

2.1 搜索引擎的种类

搜索引擎按照功能通常分为垂直搜索和综合搜索。

1、垂直搜索是指专门针对某一类信息进行搜索。例如:会搜网 主要做商务搜索的,并且提供商务信息。除此之外还有爱看图标网、职友集等。

2、综合搜索是指对众多信息进行综合性的搜索。例如:百度、谷歌、搜狗、360搜索等。 

2.2 倒排索引

倒排索引又叫反向索引(右下图)以字或词为文档中出现的位置情况。

Lucene介绍与使用_第2张图片

在实际的运用中,我们可以对数据库中原始的数据结构(左图),在业务空闲时事先根据左图内容,创建新的倒排索引结构的数据区域(右图)。

用户有查询需求时,先访问倒排索引数据区域(右图),得出文档id后,通过文档id即可快速,准确的通过左图找到具体的文档内容。

这一过程,可以通过我们自己写程序来实现,也可以借用已经抽象出来的通用开源技术来实现。


4 Lucene概述

4.1 什么是Lucene

LOGO:

在这里插入图片描述

  • Lucene是一套用于全文检索和搜寻的开源程序库,由Apache软件基金会支持和提供

  • Lucene提供了一个简单却强大的应用程序接口(API),能够做全文索引和搜寻,在Java开发环境里Lucene是一个成熟的免费开放源代码工具

  • Lucene并不是现成的搜索引擎产品,但可以用来制作搜索引擎产品

  • 官网:http://lucene.apache.org/

4.2 什么是全文检索?

Lucene介绍与使用_第3张图片

4.3 Lucene下载及版本问题

官网:

Lucene介绍与使用_第4张图片

  • 目前最新的版本是7.x系列,但是在企业中还是用4.x比较多,所以我们学习4.x的版本

老版本下载地址:

http://archive.apache.org/dist/lucene/java/

4.4 Lucene、Solr、Elasticsearch关系

Lucene:底层的API,工具包

Solr:基于Lucene开发的企业级的搜索引擎产品

Elasticsearch:基于Lucene开发的企业级的搜索引擎产品

5 Lucene的基本使用

使用Lucene的API来实现对索引的增(创建索引)、删(删除索引)、改(修改索引)、查(搜索数据)。

5.1 创建索引

5.1.1 创建索引的流程

Lucene介绍与使用_第5张图片

文档Document:数据库中一条具体的记录

字段Field:数据库中的每个字段

目录对象Directory:物理存储位置

写出器的配置对象:需要分词器和lucene的版本

5.1.2 添加依赖 Lucene介绍与使用_第6张图片

<properties>
    <lunece.version>4.10.2lunece.version>

properties>
<dependencies>
    <dependency>
        <groupId>junitgroupId>
        <artifactId>junitartifactId>
        <version>4.12version>
    dependency>
    
    <dependency>
        <groupId>org.apache.lucenegroupId>
        <artifactId>lucene-coreartifactId>
        <version>${lunece.version}version>
    dependency>
    
    <dependency>
        <groupId>org.apache.lucenegroupId>
        <artifactId>lucene-queryparserartifactId>
        <version>${lunece.version}version>
    dependency>
    
    <dependency>
        <groupId>org.apache.lucenegroupId>
        <artifactId>lucene-analyzers-commonartifactId>
        <version>${lunece.version}version>
    dependency>
    
    <dependency>
        <groupId>org.apache.lucenegroupId>
        <artifactId>lucene-highlighterartifactId>
        <version>${lunece.version}version>
    dependency>
dependencies>

5.1.3 代码实现

步骤:

//1 创建文档对象
//2 创建存储目录
//3 创建分词器
//4 创建索引写入器的配置对象
//5 创建索引写入器对象
//6 将文档交给索引写入器
//7 提交
//8 关闭
 // 创建索引
    @Test
    public void testCreate() throws Exception{
        //1 创建文档对象
        Document document = new Document();
        // 创建并添加字段信息。参数:字段的名称、字段的值、是否存储,这里选Store.YES代表存储到文档列表。Store.NO代表不存储
        document.add(new StringField("id", "1", Field.Store.YES));
        // 这里我们title字段需要用TextField,即创建索引又会被分词。StringField会创建索引,但是不会被分词
        document.add(new TextField("title", "谷歌地图之父跳槽facebook", Field.Store.YES));

        //2 索引目录类,指定索引在硬盘中的位置
        Directory directory = FSDirectory.open(new File("d:\\indexDir"));
        //3 创建分词器对象
        Analyzer analyzer = new StandardAnalyzer();
        //4 索引写出工具的配置对象
        IndexWriterConfig conf = new IndexWriterConfig(Version.LATEST, analyzer);
        //5 创建索引的写出工具类。参数:索引的目录和配置信息
        IndexWriter indexWriter = new IndexWriter(directory, conf);

        //6 把文档交给IndexWriter
        indexWriter.addDocument(document);
        //7 提交
        indexWriter.commit();
        //8 关闭
        indexWriter.close();
 }

Lucene介绍与使用_第7张图片

5.1.4 使用工具查看索引

Lucene介绍与使用_第8张图片

5.1.5 创建索引的API详解

5.1.5.1 Document(文档类)

Document:文档对象,是一条原始的数据

Lucene介绍与使用_第9张图片

5.1.5.2 Field(字段类)

一个Document中可以有很多个不同的字段,每一个字段都是一个Field类的对象。

一个Document中的字段其类型是不确定的,因此Field类就提供了各种不同的子类,来对应这些不同类型的字段。

Lucene介绍与使用_第10张图片

这些子类有一些不同的特性:

1)DoubleField、FloatField、IntField、LongField、StringField、TextField这些子类一定会被创建索引,但是不会被分词,而且不一定会被存储到文档列表。要通过构造函数中的参数Store来指定:如果Store.YES代表存储,Store.NO代表不存储

在这里插入图片描述

2)TextField即创建索引,又会被分词。StringField会创建索引,但是不会被分词。

如果不分词,会造成整个字段作为一个词条,除非用户完全匹配,否则搜索不到:
Lucene介绍与使用_第11张图片
我们一般,需要搜索的字段,都会做分词:

在这里插入图片描述

3)StoreField一定会被存储,但是一定不创建索引

StoredField可以创建各种数据类型的字段:

Lucene介绍与使用_第12张图片

在这里插入图片描述

问题1:如何确定一个字段是否需要存储?

如果一个字段要显示到最终的结果中,那么一定要存储,否则就不存储

问题2:如何确定一个字段是否需要创建索引?

如果要根据这个字段进行搜索,那么这个字段就必须创建索引。

问题3:如何确定一个字段是否需要分词?

前提是这个字段首先要创建索引。然后如果这个字段的值是不可分割的,那么就不需要分词。例如:ID

5.1.5.3 Directory(目录类)

指定索引要存储的位置

Lucene介绍与使用_第13张图片

FSDirectory:文件系统目录,会把索引库指向本地磁盘。

特点:速度略慢,但是比较安全

RAMDirectory:内存目录,会把索引库保存在内存。

特点:速度快,但是不安全

5.1.5.4 Analyzer(分词器类)

• 提供分词算法,可以把文档中的数据按照算法分词

Lucene介绍与使用_第14张图片

这些分词器,并没有合适的中文分词器,因此一般我们会用第三方提供的分词器:

Lucene介绍与使用_第15张图片
一般我们用IK分词器。

5.1.5.5 IK分词器(重要)

  • 概述

Lucene介绍与使用_第16张图片

林良益

IK分词器官方版本是不支持Lucene4.X的,有人基于IK的源码做了改造,支持了Lucene4.X:

Lucene介绍与使用_第17张图片

  • 基本使用

引入IK分词器:

Lucene介绍与使用_第18张图片

    <dependency>
    
      <groupId>com.janeluo</groupId>
    
      <artifactId>ikanalyzer</artifactId>
    
      <version>2012_u6</version>
    
    </dependency>

Lucene介绍与使用_第19张图片

中文分词更专业:

Lucene介绍与使用_第20张图片

  • 扩展词典和停用词典

IK分词器的词库有限,新增加的词条可以通过配置文件添加到IK的词库中,也可以把一些不用的词条去除:
Lucene介绍与使用_第21张图片
[外链图片转存失败(img-f41wpopO-1562576510318)(assets/wps18CD.tmp.jpg)]

扩展词典:用来引入一些自定义的新词
停止词典:用来停用一些不必要的词条

Lucene介绍与使用_第22张图片

结果:分词中,加入了我们新的词,被停用的词语没有被分词:

在这里插入图片描述

5.1.5.6 IndexWriterConfig(索引写出器配置类)

1) 设置配置信息:Lucene的版本和分词器类型

在这里插入图片描述

2)设置是否清空索引库中的数据

在这里插入图片描述

5.1.5.7 IndexWriter(索引写出器类)

  • 索引写出工具,作用就是 实现对索引的增(创建索引)、删(删除索引)、改(修改索引)

Lucene介绍与使用_第23张图片

  • 可以一次创建一个,也可以批量创建索引
// 批量创建索引
    @Test
    public void testCreate2() throws Exception{
        // 创建文档的集合
        Collection<Document> docs = new ArrayList<>();
        // 创建文档对象
        Document document1 = new Document();
        document1.add(new StringField("id", "1", Field.Store.YES));
        document1.add(new TextField("title", "谷歌地图之父跳槽facebook", Field.Store.YES));
        docs.add(document1);
        // 创建文档对象
        Document document2 = new Document();
        document2.add(new StringField("id", "2", Field.Store.YES));
        document2.add(new TextField("title", "谷歌地图之父加盟FaceBook", Field.Store.YES));
        docs.add(document2);
        // 创建文档对象
        Document document3 = new Document();
        document3.add(new StringField("id", "3", Field.Store.YES));
        document3.add(new TextField("title", "谷歌地图创始人拉斯离开谷歌加盟Facebook", Field.Store.YES));
        docs.add(document3);
        // 创建文档对象
        Document document4 = new Document();
        document4.add(new StringField("id", "4", Field.Store.YES));
        document4.add(new TextField("title", "谷歌地图之父跳槽Facebook与Wave项目取消有关", Field.Store.YES));
        docs.add(document4);
        // 创建文档对象
        Document document5 = new Document();
        document5.add(new StringField("id", "5", Field.Store.YES));
        document5.add(new TextField("title", "谷歌地图之父拉斯加盟社交网站Facebook", Field.Store.YES));
        docs.add(document5);

        // 索引目录类,指定索引在硬盘中的位置
        Directory directory = FSDirectory.open(new File("d:\\indexDir"));
        // 引入IK分词器
        Analyzer analyzer = new IKAnalyzer();
        // 索引写出工具的配置对象
        IndexWriterConfig conf = new IndexWriterConfig(Version.LATEST, analyzer);
        // 设置打开方式:OpenMode.APPEND 会在索引库的基础上追加新索引。OpenMode.CREATE会先清空原来数据,再提交新的索引
        conf.setOpenMode(IndexWriterConfig.OpenMode.CREATE);

        // 创建索引的写出工具类。参数:索引的目录和配置信息
        IndexWriter indexWriter = new IndexWriter(directory, conf);
        // 把文档集合交给IndexWriter
        indexWriter.addDocuments(docs);
        // 提交
        indexWriter.commit();
        // 关闭
        indexWriter.close();
    }

5.2 查询索引数据

5.2.1 代码实现

实现步骤:

//1 创建读取目录对象

//2 创建索引读取工具

//3 创建索引搜索工具

//4 创建查询解析器

//5 创建查询对象

//6 搜索数据

//7 各种操作

@Test
    public void testSearch() throws Exception {
        // 索引目录对象
        Directory directory = FSDirectory.open(new File("d:\\indexDir"));
        // 索引读取工具
        IndexReader reader = DirectoryReader.open(directory);
        // 索引搜索工具
        IndexSearcher searcher = new IndexSearcher(reader);

        // 创建查询解析器,两个参数:默认要查询的字段的名称,分词器
        QueryParser parser = new QueryParser("title", new IKAnalyzer());
        // 创建查询对象
        Query query = parser.parse("谷歌");

        // 搜索数据,两个参数:查询条件对象要查询的最大结果条数
        // 返回的结果是 按照匹配度排名得分前N名的文档信息(包含查询到的总条数信息、所有符合条件的文档的编号信息)。
        TopDocs topDocs = searcher.search(query, 10);
        // 获取总条数
        System.out.println("本次搜索共找到" + topDocs.totalHits + "条数据");
        // 获取得分文档对象(ScoreDoc)数组.SocreDoc中包含:文档的编号、文档的得分
        ScoreDoc[] scoreDocs = topDocs.scoreDocs;
        for (ScoreDoc scoreDoc : scoreDocs) {
            // 取出文档编号
            int docID = scoreDoc.doc;
            // 根据编号去找文档
            Document doc = reader.document(docID);
            System.out.println("id: " + doc.get("id"));
            System.out.println("title: " + doc.get("title"));
            // 取出文档得分
            System.out.println("得分: " + scoreDoc.score);
        }
    }

5.2.2 核心API

5.2.2.1 QueryParser(查询解析器)

1)QueryParser(单一字段的查询解析器)

Lucene介绍与使用_第24张图片

2)MultiFieldQueryParser(多字段的查询解析器)

在这里插入图片描述

5.2.2.2 Query(查询对象,包含要查询的关键词信息)

  • 1)通过QueryParser解析关键字,得到查询对象

Lucene介绍与使用_第25张图片

  • 2)自定义查询对象(高级查询)

我们可以通过Query的子类,直接创建查询对象,实现高级查询(后面详细讲)

Lucene介绍与使用_第26张图片

5.2.2.3 IndexSearch(索引搜索对象,执行搜索功能)

IndexSearch可以帮助我们实现:快速搜索、排序、打分等功能。

IndexSearch需要依赖IndexReader类

Lucene介绍与使用_第27张图片

查询后得到的结果,就是打分排序后的前N名结果。N可以通过第2个参数来指定:

在这里插入图片描述

5.2.2.4 TopDocs(查询结果对象)

通过IndexSearcher对象,我们可以搜索,获取结果:TopDocs对象

在TopDocs中,包含两部分信息:

int totalHits :查询到的总条数

ScoreDoc[] scoreDocs	: 得分文档对象的数组

Lucene介绍与使用_第28张图片

5.2.2.5 ScoreDoc(得分文档对象)

ScoreDoc是得分文档对象,包含两部分数据:

int doc	:文档的编号----lucene给文档的一个唯一编号

float score	:文档的得分信息

拿到编号后,我们还需要根据编号来获取真正的文档信息

Lucene介绍与使用_第29张图片

5.2. 特殊查询

抽取公用的搜索方法:

public void search(Query query) throws Exception {
        // 索引目录对象
        Directory directory = FSDirectory.open(new File("indexDir"));
        // 索引读取工具
        IndexReader reader = DirectoryReader.open(directory);
        // 索引搜索工具
        IndexSearcher searcher = new IndexSearcher(reader);

        // 搜索数据,两个参数:查询条件对象要查询的最大结果条数
        // 返回的结果是 按照匹配度排名得分前N名的文档信息(包含查询到的总条数信息、所有符合条件的文档的编号信息)。
        TopDocs topDocs = searcher.search(query, 10);
        // 获取总条数
        System.out.println("本次搜索共找到" + topDocs.totalHits + "条数据");
        // 获取得分文档对象(ScoreDoc)数组.SocreDoc中包含:文档的编号、文档的得分
        ScoreDoc[] scoreDocs = topDocs.scoreDocs;

        for (ScoreDoc scoreDoc : scoreDocs) {
            // 取出文档编号
            int docID = scoreDoc.doc;
            // 根据编号去找文档
            Document doc = reader.document(docID);
            System.out.println("id: " + doc.get("id"));
            System.out.println("title: " + doc.get("title"));
            // 取出文档得分
            System.out.println("得分: " + scoreDoc.score);
        }
    }

5.2.3.1 TermQuery(词条查询)

/*
     * 测试普通词条查询
     * 注意:Term(词条)是搜索的最小单位,不可再分词。值必须是字符串!
     */
    @Test
    public void testTermQuery() throws Exception {
        // 创建词条查询对象
        Query query = new TermQuery(new Term("title", "谷歌地图"));
        search(query);
    }

Lucene介绍与使用_第30张图片

5.2.3.2 WildcardQuery(通配符查询)

 /*
     * 测试通配符查询
     * 	? 可以代表任意一个字符
     * 	* 可以任意多个任意字符
     */
    @Test
    public void testWildCardQuery() throws Exception {
        // 创建查询对象
        Query query = new WildcardQuery(new Term("title", "*歌*"));
        search(query);
    }

5.2.3.3 FuzzyQuery(模糊查询)

 /*
     * 测试模糊查询
     */
    @Test
    public void testFuzzyQuery() throws Exception {
        // 创建模糊查询对象:允许用户输错。但是要求错误的最大编辑距离不能超过2
        // 编辑距离:一个单词到另一个单词最少要修改的次数 facebool --> facebook 需要编辑1次,编辑距离就是1
//    Query query = new FuzzyQuery(new Term("title","fscevool"));
        // 可以手动指定编辑距离,但是参数必须在0~2之间
        Query query = new FuzzyQuery(new Term("title","facevool"),1);
        search(query);
    }

5.2.3.4 NumericRangeQuery(数值范围查询)

/*
	 * 测试:数值范围查询
	 * 注意:数值范围查询,可以用来对非String类型的ID进行精确的查找
	 */
	@Test
	public void testNumericRangeQuery() throws Exception{
		// 数值范围查询对象,参数:字段名称,最小值、最大值、是否包含最小值、是否包含最大值
		Query query = NumericRangeQuery.newLongRange("id", 2L, 2L, true, true);
		
		search(query);
	}

5.2.3.5 BooleanQuery(组合查询)

 /*
     * 布尔查询:
     * 	布尔查询本身没有查询条件,可以把其它查询通过逻辑运算进行组合!
     * 交集:Occur.MUST + Occur.MUST
     * 并集:Occur.SHOULD + Occur.SHOULD
     * 非:Occur.MUST_NOT
     */
    @Test
    public void testBooleanQuery() throws Exception{

        Query query1 = NumericRangeQuery.newLongRange("id", 1L, 3L, true, true);
        Query query2 = NumericRangeQuery.newLongRange("id", 2L, 4L, true, true);
        // 创建布尔查询的对象
        BooleanQuery query = new BooleanQuery();
        // 组合其它查询
        query.add(query1, BooleanClause.Occur.MUST_NOT);
        query.add(query2, BooleanClause.Occur.SHOULD);

        search(query);
    }

5.4 修改索引

步骤:

//1 创建文档存储目录

	//2 创建索引写入器配置对象

	//3 创建索引写入器

	//4 创建文档数据

	//5 修改

	//6 提交

	//7 关闭
/* 测试:修改索引
     * 注意:
     * 	A:Lucene修改功能底层会先删除,再把新的文档添加。
     * 	B:修改功能会根据Term进行匹配,所有匹配到的都会被删除。这样不好
     * 	C:因此,一般我们修改时,都会根据一个唯一不重复字段进行匹配修改。例如ID
     * 	D:但是词条搜索,要求ID必须是字符串。如果不是,这个方法就不能用。
     * 如果ID是数值类型,我们不能直接去修改。可以先手动删除deleteDocuments(数值范围查询锁定ID),再添加。
     */
@Test
public void testUpdate() throws Exception{
    // 创建目录对象
    Directory directory = FSDirectory.open(new File("indexDir"));
    // 创建配置对象
    IndexWriterConfig conf = new IndexWriterConfig(Version.LATEST, new IKAnalyzer());
    // 创建索引写出工具
    IndexWriter writer = new IndexWriter(directory, conf);

    // 创建新的文档数据
    Document doc = new Document();
    doc.add(new StringField("id","1",Store.YES));
    doc.add(new TextField("title","谷歌地图之父跳槽facebook ",Store.YES));
    /* 修改索引。参数:
         * 	词条:根据这个词条匹配到的所有文档都会被修改
         * 	文档信息:要修改的新的文档数据
         */
    writer.updateDocument(new Term("id","1"), doc);
    // 提交
    writer.commit();
    // 关闭
    writer.close();
}

5.5 删除索引

步骤:

//1 创建文档对象目录

//2 创建索引写入器配置对象

//3 创建索引写入器

//4 删除

//5 提交

//6 关闭

/*
     * 演示:删除索引
     * 注意:
     * 	一般,为了进行精确删除,我们会根据唯一字段来删除。比如ID
     * 	如果是用Term删除,要求ID也必须是字符串类型!
     */
@Test
public void testDelete() throws Exception {
    // 创建目录对象
    Directory directory = FSDirectory.open(new File("indexDir"));
    // 创建配置对象
    IndexWriterConfig conf = new IndexWriterConfig(Version.LATEST, new IKAnalyzer());
    // 创建索引写出工具
    IndexWriter writer = new IndexWriter(directory, conf);

    // 根据词条进行删除
    //		writer.deleteDocuments(new Term("id", "1"));

    // 根据query对象删除,如果ID是数值类型,那么我们可以用数值范围查询锁定一个具体的ID
    //		Query query = NumericRangeQuery.newLongRange("id", 2L, 2L, true, true);
    //		writer.deleteDocuments(query);

    // 删除所有
    writer.deleteAll();
    // 提交
    writer.commit();
    // 关闭
    writer.close();
}

6 Lucene的高级使用

6.1 高亮显示

原理:

1)给所有关键字加上一个HTML标签

Lucene介绍与使用_第31张图片

2)给这个特殊的标签设置CSS样式

在这里插入图片描述

实现步骤:

	//1 创建目录 对象
    //2 创建索引读取工具

	//3 创建索引搜索工具

	//4 创建查询解析器

	//5 创建查询对象

	//6 创建格式化器

	//7 创建查询分数工具

	//8 准备高亮工具

	//9 搜索

	//10 获取结果

	//11 用高亮工具处理普通的查询结果
// 高亮显示
    @Test
    public void testHighlighter() throws Exception {
        // 目录对象
        Directory directory = FSDirectory.open(new File("indexDir"));
        // 创建读取工具
        IndexReader reader = DirectoryReader.open(directory);
        // 创建搜索工具
        IndexSearcher searcher = new IndexSearcher(reader);

        QueryParser parser = new QueryParser("title", new IKAnalyzer());
        Query query = parser.parse("谷歌地图");

        // 格式化器
        Formatter formatter = new SimpleHTMLFormatter("", "");
        QueryScorer scorer = new QueryScorer(query);
        // 准备高亮工具
        Highlighter highlighter = new Highlighter(formatter, scorer);
        // 搜索
        TopDocs topDocs = searcher.search(query, 10);
        System.out.println("本次搜索共" + topDocs.totalHits + "条数据");

        ScoreDoc[] scoreDocs = topDocs.scoreDocs;
        for (ScoreDoc scoreDoc : scoreDocs) {
            // 获取文档编号
            int docID = scoreDoc.doc;
            Document doc = reader.document(docID);
            System.out.println("id: " + doc.get("id"));

            String title = doc.get("title");
            // 用高亮工具处理普通的查询结果,参数:分词器,要高亮的字段的名称,高亮字段的原始值
            String hTitle = highlighter.getBestFragment(new IKAnalyzer(), "title", title);

            System.out.println("title: " + hTitle);
            // 获取文档的得分
            System.out.println("得分:" + scoreDoc.score);
        }

    }

6.2 排序

// 排序
    @Test
    public void testSortQuery() throws Exception {
        // 目录对象
        Directory directory = FSDirectory.open(new File("indexDir"));
        // 创建读取工具
        IndexReader reader = DirectoryReader.open(directory);
        // 创建搜索工具
        IndexSearcher searcher = new IndexSearcher(reader);

        QueryParser parser = new QueryParser("title", new IKAnalyzer());
        Query query = parser.parse("谷歌地图");

        // 创建排序对象,需要排序字段SortField,参数:字段的名称、字段的类型、是否反转如果是false,升序。true降序
        Sort sort = new Sort(new SortField("id", SortField.Type.LONG, true));
        // 搜索
        TopDocs topDocs = searcher.search(query, 10,sort);
        System.out.println("本次搜索共" + topDocs.totalHits + "条数据");

        ScoreDoc[] scoreDocs = topDocs.scoreDocs;
        for (ScoreDoc scoreDoc : scoreDocs) {
            // 获取文档编号
            int docID = scoreDoc.doc;
            Document doc = reader.document(docID);
            System.out.println("id: " + doc.get("id"));
            System.out.println("title: " + doc.get("title"));
        }
    }

6.3 分页

// 分页
	@Test
	public void testPageQuery() throws Exception {
		// 实际上Lucene本身不支持分页。因此我们需要自己进行逻辑分页。我们要准备分页参数:
		int pageSize = 2;// 每页条数
		int pageNum = 3;// 当前页码
		int start = (pageNum - 1) * pageSize;// 当前页的起始条数
		int end = start + pageSize;// 当前页的结束条数(不能包含)
		
		// 目录对象
		Directory directory = FSDirectory.open(new File("indexDir"));
		// 创建读取工具
		IndexReader reader = DirectoryReader.open(directory);
		// 创建搜索工具
		IndexSearcher searcher = new IndexSearcher(reader);
		
		QueryParser parser = new QueryParser("title", new IKAnalyzer());
		Query query = parser.parse("谷歌地图");
		
		// 创建排序对象,需要排序字段SortField,参数:字段的名称、字段的类型、是否反转如果是false,升序。true降序
		Sort sort = new Sort(new SortField("id", Type.LONG, false));
		// 搜索数据,查询0~end条
		TopDocs topDocs = searcher.search(query, end,sort);
		System.out.println("本次搜索共" + topDocs.totalHits + "条数据");
		
		ScoreDoc[] scoreDocs = topDocs.scoreDocs;
		for (int i = start; i < end; i++) {
			ScoreDoc scoreDoc = scoreDocs[i];
			// 获取文档编号
			int docID = scoreDoc.doc;
			Document doc = reader.document(docID);
			System.out.println("id: " + doc.get("id"));
			System.out.println("title: " + doc.get("title"));
		}
	}

6.4 得分算法

l Lucene会对搜索结果打分,用来表示文档数据与词条关联性的强弱,得分越高,表示查询的匹配度就越高,排名就越靠前!其算法公式是:

Lucene介绍与使用_第32张图片

Lucene介绍与使用_第33张图片


你可能感兴趣的:(索引库查询,lucene)