- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 基于Hadoop的海量图像检索
usp1994
hadoopeclipse大数据
基于Hadoop的海量图像检索“MassiveImageRetrievalBasedonHadoop:AStudyinSoftwareEngineering”完整下载链接:基于Hadoop的海量图像检索文章目录基于Hadoop的海量图像检索摘要第一章引言1.1研究背景1.2研究意义1.3国内外研究现状1.4研究内容与方法1.5论文结构第二章相关技术介绍2.1Hadoop框架2.2分布式存储与计算2
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 哈工大SCIR | 场景图生成简述
zenRRan
人工智能计算机视觉知识图谱
原创作者:梁家锋郑子豪王禹鑫孙一恒刘铭出处:哈工大SCIR进NLP群—>加入NLP交流群1引言场景图是一种结构表示,它将图片中的对象表示为节点,并将它们的关系表示为边。最近,场景图已成功应用于不同的视觉任务,例如图像检索[3]、目标检测、语义分割、图像合成[4]和高级视觉-语言任务(如图像字幕[1]或视觉问答[2]等)。它是一种具有丰富信息量的整体场景理解方法,可以连接视觉和自然语言领域之间巨大差
- CVPR 2023: CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not
结构化文摘
sketchmacosui
我们使用以下6个分类标准对本文的研究选题进行分析:1.任务类型:图像检索:最常见任务,目标是检索与给定草图相似的图像。例如:[1,2,3,4,5,6,7,8,9,14,16,30,35,42,43,44,53,58,59,61,62,64,65,67,68,72,73]图像生成:相反,根据草图生成图像。例如:[11,33]目标检测:基于草图识别图像中的特定目标。例如:[13]2.输入模式:仅草图:
- 【机器视觉实验】机器视觉实验四——基于knn的场景图像检索、基于SVM的人脸图像识别
沐风—云端行者
深度学习实验支持向量机人工智能算法机器视觉计算机视觉机器学习图像识别
一、实验内容实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。(1)编程实现基于knn的场景图像检索a)至少实现三种特征组合进行检索;b)使用recall与precision分析不同特征组合对检索精度的影响。(2)实现基于SVM的人脸图像识别a)准备一张含有有自己照片的图片,并拍摄自己的人脸图片集;b)训练SVM人脸分类器c)实现基于滑动窗口的人脸检测算法;d)识别出
- 计算机设计大赛 图像检索算法
iuerfee
python
文章目录1前言2图像检索介绍(1)无监督图像检索(2)有监督图像检索3图像检索步骤4应用实例5最后1前言优质竞赛项目系列,今天要分享的是图像检索算法该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时代,随着各种社
- 2024年,AIGC赛道专利文献和软著大全
AI周红伟
AIGC人工智能机器学习chatgpt
一、周红伟-深度学习国际发明专利深度学习国际发明专利基于深度学习的图像检索方法及装置,专利公开公告号:CN107368614A。专利类型:发明公布。发明人:周红伟;李凯;任伟;李庆;郭奇杰;周杨;刘川郁二、机器学习算法发表文献Simulationmodelanddropletejectionperformanceofathermal-bubblemicroejector,HongweiZhou,A
- 探索图像检索:从理论到实战的应用
TechLead KrisChang
机器学习深度学习人工智能
目录一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术三、图像检索技术代码示例图像特征提取示例相似度计算索引技术四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化五、实际应用图像检索在电子商务领域的应用图像检索在社交媒体中的应用图像检索在云存储服务中的应用本文深入探讨了图像检索技术及其在主流APP中的应用,涵盖了特征提取、相
- 【GitHub项目推荐--全球首个开源图像识别系统】【转载】
旅之灵夫
GitHub项目推荐github
你知道人脸识别、商品识别、车辆识别,以图搜图乃至自动驾驶,背后的技术是什么嘛?并不是图像分类、目标检测这些东西,而是综合使用目标检测、图像分类、度量学习、图像检索的【通用图像识别系统】…度量学习是啥?图像检索是啥?通用图像识别系统又是啥?好奇之余,老逛突然发现了一个通用图像识别系统快速搭建神器!GitHub地址:https://github.com/PaddlePaddle/PaddleClas那
- 基于内容的图像web检索系统
乐心唯帅
计算机视觉深度学习
题目:基于内容的图像在线检索系统简介:基于内容的图像在线检索系统(ContentBasedOnlineImageRetrieval,以下简称CBOIR),是计算机视觉领域中关注大规模数字图像内容检索的研究分支。典型的CBOIR系统,允许用户在线输入一张图像,在远程图像数据库中查找具有相同或相似内容的其它图片。要求:本实训完成的系统要求实现基于视觉特征的在线图像检索。该项目的实训内容主要包括:1.搭
- 半监督学习 - 三元组学习(Triplet Learning)
草明
数据结构与算法学习机器学习人工智能
什么是机器学习三元组学习(TripletLearning)是半监督学习中一种用于学习有用表示的方法。它通常用于学习数据中的相似性关系,尤其在人脸识别、图像检索等领域中得到广泛应用。三元组学习是通过构造三元组(triplet)来训练模型,每个三元组包含一个锚点样本(anchorsample)、一个正样本(positivesample)和一个负样本(negativesample)。三元组的构造锚点样本
- [2019CVPR论文笔记]Doodle to Search Practical Zero-Shot Sketch-based Image Retrieval
qq_44932092
CVPR2019图像检索图像检索CVPR2019深度学习few-shot
摘要文章地址:http[https://arxiv.org/pdf/1904.03451v1.pdf]在本文中,我们研究了基于零样本的草图图像检索(ZS-SBIR)的问题,其中人类草图被用作查询以从不可见的类别中检索照片。我们通过提出一种新颖的ZS-SBIR场景来进一步推进现有技术,该场景代表了其实际应用中的一步。新设置独特地认识到实际ZS-SBIR的两个重要但经常被忽视的挑战,(1)业余草图和照
- 图像处理中常用的距离
图灵追慕者
图像处理图像处理欧氏距离常用距离距离的类型距离度量
说明在图像处理中,常用的距离度量用于衡量两个向量或特征之间的差异或相似性。以下是一些常用的距离度量及其使用说明和应用场景:欧氏距离(EuclideanDistance):欧氏距离是最常用的距离度量,用于衡量两个向量之间的几何距离。它可以用于图像检索、目标识别和图像聚类等任务。曼哈顿距离(ManhattanDistance):曼哈顿距离是指两个向量之间的每个维度差的绝对值之和。它适用于特征具有明显方
- 无代码DIY图像检索
colorknight
低代码人工智能HuggingFace大模型MilvusEmbedding图像检索
软件环境准备可参见《HuggingFists-低代码玩转LLMRAG-准备篇》中的HuggingFists安装及Milvus安装。流程环境准备图片准备进入HuggingFists内置的文件系统,数据源->文件系统->sengee_fs_settings_201创建Image文件夹将事先准备的多张相同或不同种类的图片上传到Image目录下。如下图:HuggingFace账号准备HuggingFist
- 遥感影像-语义分割数据集:WHDLD数据集详细介绍及训练样本处理流程
ly_0624
语义分割数据集深度学习人工智能图像处理数据分析计算机视觉
原始数据集详情简介:WHDLD是一个密集的标签数据集,可用于多标签任务,例如遥感图像检索(RSIR)和分类,以及其他基于像素的任务,例如语义分割(在遥感中也称为分类)。KeyValue卫星类型GaoFen-1、ZiYuan-3覆盖区域未知场景未知分辨率2m数量4940张单张尺寸256*256原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数单通道标签类别对照表像素值类别名(英文)类
- 灰度共生矩阵纹理特征提取matlab,灰度共生矩阵纹理特征提取的Matlab实现
陆牙
收稿日期:2012-03-20;修回日期:2012-06-24基金项目:国家“十一五”计划课题(FIB070335-B8-04)作者简介:焦蓬蓬(1981-),女,硕士,讲师,研究方向为数字信号处理。灰度共生矩阵纹理特征提取的Matlab实现焦蓬蓬,郭依正,刘丽娟,卫星(南京师范大学泰州学院,江苏泰州225300)摘要:图像的特征提取是图像的识别和分类、基于内容的图像检索、图像数据挖掘等研究内容的
- 简易机器学习笔记(八)关于经典的图像分类问题-常见经典神经网络LeNet
Leventure_轩先生
不涉及理论的简易机器学习笔记机器学习笔记分类
前言图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层次视觉任务的基础。图像分类在许多领域都有着广泛的应用,如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。这里简单讲讲LeNet我的推荐是可以看看这个视频,可视化的查看卷积神经网络是如何
- [2015 Springer] Local Image Descriptor: Modern Approaches——1 Introduction
AllisWell_WP
计算机视觉图像处理书翻译计算机视觉图像处理特征提取描述符翻译
转载请注明链接:有问题请及时联系博主:Alliswell_WP持续更新中…翻译本地图像描述符:现代方法——作者:BinFan,ZhenhuaWang,FuchaoWu有关该系列的更多信息,请访问http://www.springer.com/series/10028前言1在过去的15年中,特征点描述符已成为计算机视觉社区中必不可少的工具。它们是从图像检索到多图像立体匹配以及从表面重建到图像增强等应
- 互联网加竞赛 python图像检索系统设计与实现
Mr.D学长
pythonjava
0前言优质竞赛项目系列,今天要分享的是python图像检索系统设计与实现学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1课题简介图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时
- 竞赛保研 python图像检索系统设计与实现
iuerfee
python
0前言优质竞赛项目系列,今天要分享的是python图像检索系统设计与实现学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1课题简介图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时
- 新零售场景(图像检索、识别,分类)sku级别数据集
Funny_AI_LAB
数据汇总计算机视觉目标检测分类零售
1.AiProducts-Challenge(阿里2020)下载地址:2020-AiProducts-Challenge-dataset数据介绍:Large-scaleProductRecognition赛题与数据-天池大赛-阿里云天池该数据集包含近300万张图片,涵盖5万个SKU级商品类别。1st-plan:1st__WinnerSolutionforAliProductsChallengeLa
- 遥感图像之多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练
qq_41627642
深度学习多模态论文阅读计算机视觉人工智能
一、论文阅读1、摘要背景遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而,传统的方法忽略了遥感图像多尺度和目标冗余的特点,导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题,提出了一种新的非对称多模态特征匹配网络(AMFMN)。该模型可适应多尺度特征输入,支持多源检索方法,并能动态过滤冗余特征。AMFMN采用多尺度视觉自注意(MVSA)模块提取R
- 在Python中探索图像相似性方法
小北的北
python开发语言
在一个充斥着图像的世界里,衡量和量化图像之间相似性的能力已经成为一项关键任务。无论是用于图像检索、内容推荐还是视觉搜索,图像相似性方法在现代应用中起着至关重要的作用。幸运的是,Python提供了大量工具和库,使得开发人员和研究人员能够轻松地探索和实现这些方法。在这篇博客中,我们将深入探讨各种图像相似性技术,并演示如何使用Python实现它们。理解图像相似性图像相似性可以被看作是两幅图像在视觉内容方
- 浅析行人重识别
Shirleybebe
行人重识别在此先给出官方解释: 行人重识别(Personre-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。给定一个监控行人图像:给定一个希
- akaze特征匹配怎么去掉不合适的点_自动驾驶汽车视觉- 图像特征提取与匹配技术
weixin_39890102
opencv4图像特征匹配opencv纹理特征提取sift特征提取图像特征匹配opencv4基于fpga的vga图像显示
FeaturedetectionandmatchingGithub:https://github.com/williamhyin/SFND_2D_Feature_TrackingEmail:
[email protected]特征提取和匹配是许多计算机视觉应用中的一个重要任务,广泛运用在运动结构、图像检索、目标检测等领域。每个计算机视觉初学者最先了解的特征检测器几乎都是1988年发布的H
- 如何高效、精准地进行图片搜索?看看轻量化视觉预训练模型
AI科技大本营
神经网络大数据算法编程语言python
来源|微软研究院AI头条编者按:你是否有过图像检索的烦恼?或是难以在海量化的图像中准确地找到所需图像,或是在基于文本的检索中得到差强人意的结果。对于这个难题,微软亚洲研究院和微软云计算与人工智能事业部的研究人员对轻量化视觉模型进行了深入研究,并提出了一系列视觉预训练模型的设计和压缩方法,实现了视觉Transformer的轻量化部署需求。目前该方法和模型已成功应用于微软必应搜索引擎,实现了百亿图片的
- Image Caption:图像字幕生成
于建民
技术博客ImageCaptionRNN图像注释图像描述场景理解
前言图像处理与自然语言处理的结合,给图像加字幕或者描述。应用前景非常广,比如早教,图像检索,盲人导航等。图像注释问题的通用解法非常接近于Encoder-Decoder结构,下面就几种方法作简单总结。m-RNNMao这篇2015-paper,根据输入语句和图片,为图片生成字幕;以DeepRNN处理语句,用CNN处理图片。基本思路:直接将图像表示和词向量以及隐向量作为多模判断的输入。左侧是简单RNN结
- 行人重识别-REID
椒椒。
计算机视觉深度学习人工智能
行人重识别-REID一、REID二、为什么使用REID三、REID应用场景四、REID研究形式五、REID存在的挑战一、REID行人重识别-REID(personre-identification)也叫做行人再识别技术。利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。如下图所示:一个区域有多个摄像头拍
- 汽车虚拟仿真视频数据理解--CLIP模型原理
无盐薯片
比赛神经网络python人工智能
CLIP模型原理CLIP的全称是ContrastiveLanguage-ImagePre-Training,中文是对比语言-图像预训练,是一个预训练模型,简称为CLIP。该模型是OpenAI在2021年发布的,最初用于匹配图像和文本的预训练神经网络模型,这个任务在多模态领域比较常见,可以用于文本图像检索,CLIP是近年来在多模态研究领域的经典之作。该模型大量的成对互联网数据进行预训练,在很多任务表
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep