Theory of computation 学习笔记(Monash FIT2014)

Theory of computation 学习笔记(Monash FIT2014)

  • 声明
  • Conjunctive Normal Form
  • predicate logic
  • induction
  • Regular expression
  • Automata
    • Finite Automaton (FA)
    • Nondeterministic Finite Automata (NFA)
  • Kleene’s Theorem
  • 互相转换
    • Regular->NFA
    • NFA->FA
    • GNFA->regular
  • 简化FA
  • 正则语言的闭合性
  • context free
  • Context free -> PushDown
  • NFA->CFG
  • Chomsky Normal Form
  • Cocke-Younger-Kasami (CYK) algorithm
  • Church-Turing Thesis
  • Decidable
  • Recursively enumerable languages

声明

笔记内容来源于 monash university FIT2014 课程内容
仅供学习交流

Conjunctive Normal Form

在布尔逻辑中,如果一个公式是子句的合取,那么它是合取范式(CNF)的。
即,多个表达式的交集(∩)。
例: (B ∨ C ∨ T) ∧ (¬B ∨ ¬C) ∧ (¬B ∨ ¬T) ∧ (¬C ∨ ¬T)

predicate logic

In mathematical logic, a predicate is commonly understood to be a Boolean-valued function .
P: X→ {true, false}, called the predicate on X.
例:∀X : computer(X) ⇐⇒ automatic(X) ∧ programmable(X) ∧ storedProgram(X) ∧ generalPurpose(X)
这句表达式的意义为:对于任意计算机, 当且仅当它同时满足,是自动机,可被运行,可存储运行,能运算所有可计算问题,它被称为计算机。

induction

数学归纳法
证明步骤:

(i) Inductive basis:
(ii) Our inductive hypothesis is that …… is true for n. We need to use this to show that n can be replaced by n + 1 in this inequality
So, we’ve shown that, if the claimed inequality holds for n, then it holds for n + 1
(iii) By the Principle of Mathematical Induction, the claimed inequality must hold for all n.

即:

  1. 先列出base case, 例如对于n>=1的问题, n=1就是base case。
  2. 假设n=k时,成立
    用1和2证明k+1时仍成立
  3. 得出结论,原式正确。

Regular expression

证明一个语言不是正则:
Pumping Lemma :
Then for all words w in L with more than N letters,
there exist strings x, y, z, with y ≠ ε, such that
◦ w = xyz
◦ length(x) + length(y) £ N
◦ for all i ≥ 0, xyiz is in L.

例:(证明语言DOG非正则)
Assume, by way of contradition, that DOG is regular. Then there is a FA that recognises it. Let N be the number of states in such an FA. Let w be the string grN (woof) N . By the Pumping Lemma, w can be divided up into three parts, w = xyz, such that y is nonempty, |xy| ≤ N, and xyi z ∈ DOG for all i ≥ 0. The requirement that |xy| ≤ N forces y to fall within the first part, grN , of w. Consider the string xyyz. If y contains g, then xyyz has two gs, so xyyz 6∈ DOG, since every string in DOG has exactly one g. If y contains no g, then it’s all-r, so repetition of y creates at least one extra r (since y is nonempty), so the number of rs is greater than the number of woofs, which violates the definition of DOG. So xyyz 6∈ DOG, which contradicts the conclusion of the Pumping Lemma. So our initial assumption, that DOG is regular, must be incorrect. So DOG is not regular.

Automata

自动机原理讲解见:

Finite Automaton (FA)

Every string traces a unique path in the automaton
即:对于每个state(点),需要分配所有输入类型的输出。比如:a,b 进入state3,那么state3一定有a和b的指出。

解题技巧:对于复杂情况,简化成该问题的反面,取补集。
accept->not accept and not accept-> accept
一个FA的反面:讲所有final改成nonfinal,nonfinal改为final。

Nondeterministic Finite Automata (NFA)

待补充
Theory of computation 学习笔记(Monash FIT2014)_第1张图片

Kleene’s Theorem

Regular expression, FA, NFA, GNFA 都可以互相转换。

互相转换

Regular->NFA

按如下图例转换

Theory of computation 学习笔记(Monash FIT2014)_第2张图片

NFA->FA

Theory of computation 学习笔记(Monash FIT2014)_第3张图片
从start state开始, 找一步之内能接受对应值的state,将这些state作为新集合,继续寻找。直到没有新的集合出现。

空,不作为计数路径,可以直接跳过:
Theory of computation 学习笔记(Monash FIT2014)_第4张图片

GNFA->regular

Theory of computation 学习笔记(Monash FIT2014)_第5张图片

简化FA

图例待补充

Convert this into an equivalent FA with the minimum possible number of states:
Final state 作为不同的颜色标记,查看其他行的颜色类型是否一样,不一样的state作为新的颜色。直到不可再分。

正则语言的闭合性

Closure properties of regular languages
complement, union, intersection,concatenation

即正则语言的,补集,并集,交集,级联,仍是正则语言。

context free

Theory of computation 学习笔记(Monash FIT2014)_第6张图片

Derivation of context free
Theory of computation 学习笔记(Monash FIT2014)_第7张图片

Context free -> PushDown

Theory of computation 学习笔记(Monash FIT2014)_第8张图片
S前的直接读,
S后的先放进stack,然后放S(S stack在顶层),S处理完后最后读取。

NFA->CFG

Theory of computation 学习笔记(Monash FIT2014)_第9张图片

Chomsky Normal Form

Nonterminal -> Nonterminal Nonterminal
Nonterminal -> terminal

Cocke-Younger-Kasami (CYK) algorithm

Pumping Lemma for CFG
Theory of computation 学习笔记(Monash FIT2014)_第10张图片

Church-Turing Thesis

Any function which can defined by an algorithm can be represented by a Turing Machine.

Evidence:
• different approaches to computability end up in agreement
• long experience, that algorithms can be implemented as programs, and therefore on Turing machines
• no known counterexamples, i.e., no algorithms which seem to be unimplementable

Decidable

Theory of computation 学习笔记(Monash FIT2014)_第11张图片

Recursively enumerable languages

Theory of computation 学习笔记(Monash FIT2014)_第12张图片

你可能感兴趣的:(学习笔记)