例子参考高性能流媒体服务器SRS:https://github.com/winlinvip/simple-rtmp-server
多进程结构是实现那些服务内容不相关的服务器的os层面的自然抽象。
1. 容错:若系统在提供服务时,服务单元之间界限清晰没有或很少交互(例如浏览两个不相关的网页),而服务单元有很大可能出错,希望出错时不影响其他单元。
2. 高性能:服务器若支持多CPU或超线程,多线程无法完全利用机器性能,多进程则可以让服务器满载。
最近使用多进程开发流媒体服务器,性能很不错,预计能支持1000个客户端并发播放1000kbps,能跑到千兆网的极限。参考这篇文章:http://blog.csdn.net/winlinvip/article/details/7840285 。
支持高并发的多进程服务器,应遵循以下设计要点:
关于chrome的多进程结构的背景:
http://blog.chromium.org/2008/09/multi-process-architecture.html
http://www.charlesreis.com/research/publications/eurosys-2009-talk.pdf?attredirects=0
总结如下:
1. 应该对系统分析,先搞清楚系统的目标,根据目标划分边界,再设计系统结构。
例如浏览器模型中,多进程模型分为:核心进程(存储,网络,UI)、插件进程、展现进程(DOM,JS引擎,HTML展示)。
这样设计的原因在于对于浏览器系统的分析————系统的边界可以定义在相关的页面,即将可相互操作的页面分为Site组。
区分系统边界的原因在于浏览器的实际问题“网页和脚本极易出错导致崩溃“、”加载速度随网页增多变慢“。
所以,先应分析系统的主要设计目标(要解决的问题),然后分析边界(可分解的子系统),最后才能设计系统的结构(进程的模型之类的)。
插件进程作为单独进程的原因,也是由系统的目标决定的:插件在边界上很明显,独立于HTML展现,而且也有崩溃的可能性。
核心进程一旦崩溃,整个系统也就崩溃了,所以核心进程的边界是也避开那些容易崩溃的系统(譬如把插件独立出去)。
2. 系统的目标和内涵:稳定性,性能。
稳定性:包括容错性,内存管理,可问责性。
容错性:即某个子系统崩溃时是否能不影响其他系统。譬如某个页面崩溃是否其他页面还能不受影响。
可问责性:即当系统出问题时,是否能快速定位是某个子系统,并采取措施解决问题。譬如,当浏览器占用过多资源时(内存泄漏啦之类),是否能快速找到出问题的页面,关闭它解决问题。
内存管理:是否能汇报各个子系统的内存使用情况,内存泄漏时是否能重启或关闭子系统解决问题。
性能:包括实时性,吞吐速度,多CPU加速。
实时性:即系统对于用户的响应是否实时。譬如,A页面现在很慢,但用户在B页面中操作是否能实时响应。
吞吐速度:当任务增多时系统的整体吞吐能力。譬如,开很多个页面,系统是否还能性能良好。
多CPU加速:系统是否能利用多CPU的服务器加速。譬如,是否能利用24CPU的机器能力,还是说24CPU能力和4CPU能力一样?
3. 多进程架构会占用更多内存。
4. Chrome其实支持单进程和多进程结构。
nginx也是多进程,虽然单个进程也可以支持高并发,但在实际服务器上,一般还是会使用多进程——这也是为什么用多进程的原因之一。参考nginx的系统结构一文:http://www.aosabook.org/en/nginx.html (我的朋友雷总分享给我的好东西,感谢他)。
参考《Unix环境高级编程》中对fork的总结,即多进程的使用场景:
fork有两种用法:
(1) 一个父进程希望复制自己,使父、子进程同时执行不同的代码段。父进程侦听请求,当请求到达时,父进程fork子进程处理此请求,父进程继续侦听下一个请求。
(2) 一个进程要执行一个不同的程序。这对shell是常见的情况。在这种情况下,子进程在从fork返回后立即调用exec。
其实也提到了服务器的应用。可见网络服务器使用多进程是有很长历史了。
两个多进程服务器原型:http://blog.csdn.net/winlinvip/article/details/7764526
linux多进程服务器真的很给力,赞一个!
写了一个原型,让服务器保持10200个稳定连接的原型。
开启了15个worker进程(伺服进程):
ps -axf
1540 ? Ss 0:00 /usr/sbin/sshd
1959 ? Ss 0:00 \_ sshd: winlin [priv]
1961 ? S 0:00 \_ sshd: winlin@pts/0
1962 pts/0 Ss 0:00 \_ -bash
30127 pts/0 S+ 0:00 \_ ./multiple_process multi
30128 pts/0 S+ 0:00 \_ ./multiple_process multi
30129 pts/0 S+ 0:00 \_ ./multiple_process multi
30130 pts/0 S+ 0:00 \_ ./multiple_process multi
30131 pts/0 S+ 0:00 \_ ./multiple_process multi
30132 pts/0 S+ 0:00 \_ ./multiple_process multi
30133 pts/0 S+ 0:00 \_ ./multiple_process multi
30134 pts/0 S+ 0:00 \_ ./multiple_process multi
30135 pts/0 S+ 0:00 \_ ./multiple_process multi
30136 pts/0 S+ 0:00 \_ ./multiple_process multi
30137 pts/0 S+ 0:00 \_ ./multiple_process multi
30138 pts/0 S+ 0:00 \_ ./multiple_process multi
30139 pts/0 S+ 0:00 \_ ./multiple_process multi
30140 pts/0 S+ 0:00 \_ ./multiple_process multi
30141 pts/0 S+ 0:00 \_ ./multiple_process multi
30142 pts/0 S+ 0:00 \_ ./multiple_process multi
process #30128 serving 387 clients
process #30129 serving 732 clients
process #30130 serving 1020 clients
process #30131 serving 443 clients
process #30132 serving 437 clients
process #30133 serving 434 clients
process #30134 serving 883 clients
process #30135 serving 678 clients
process #30136 serving 958 clients
process #30137 serving 329 clients
process #30138 serving 758 clients
process #30139 serving 1020 clients
process #30140 serving 1020 clients
process #30141 serving 411 clients
process #30142 serving 690 clients
共有10200个client。
开启了10个程序,每个建立1020个连接:
[1] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[2] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[3] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[4] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[5] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[6] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[7] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[8] Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[9]- Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
[10]+ Running ./test_client 127.0.0.1 1990 1020 > /dev/null 2>&1 &
该模型能保持稳定的10200个连接,由于每个进程只支持1024个fd(可设置),所以每个进程限定最多连接为1020个fd。
//multiple_process.cpp
#include
#include
#include
#include
#include
using namespace std;
// for socket
#include
#include
#include
// for select
#include
// for process control
#include
#include
int prepare_server_socket(int server_port){
int server_fd = socket(AF_INET, SOCK_STREAM, 0);
if(server_fd == -1){
cout << "init socket error" << endl;
exit(1);
}
cout << "socket init success" << endl;
int reuse_socket = 1;
if(setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR, &reuse_socket, sizeof(int)) == -1){
cout << "reuse socket error" << endl;
exit(1);
}
cout << "socket set to reuse success" << endl;
struct sockaddr_in addr;
memset(&addr, 0, sizeof(sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_port = htons(server_port);
addr.sin_addr.s_addr = INADDR_ANY;
if(bind(server_fd, (const struct sockaddr*)&addr, sizeof(addr)) == -1){
cout << "bind socket error" << endl;
exit(1);
}
cout << "socket bind success" << endl;
if(listen(server_fd, 10) == -1){
cout << "listen socket error" << endl;
exit(1);
}
cout << "socket listen success" << endl;
return server_fd;
}
bool can_socket_read(int socket_fd, int timeout_ms){
fd_set set;
FD_ZERO(&set);
FD_SET(socket_fd, &set);
timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = timeout_ms * 1000;
if(select(socket_fd + 1, &set, NULL, NULL, &timeout) == -1){
cout << "select socket error " << endl;
exit(1);
}
if(!FD_ISSET(socket_fd, &set)){
return false;
}
return true;
}
vector clients;
void process_cycle(int server_fd){
cout << "process #" << getpid() << " accept and process client from socket " << server_fd << endl;
while(true){
// accept
while(clients.size() < 1020){
if(!can_socket_read(server_fd, 500)){
break;
}
//cout << "get a client, accept it" << endl;
int client_fd = accept(server_fd, NULL, 0);
if(client_fd == -1){
cout << "failed to accept client" << endl;
exit(1);
}
//cout << "accept client success: #" << client_fd << endl;
clients.push_back(client_fd);
}
// process: PING.
if(true){
vector::iterator ite;
for(ite = clients.begin(); ite != clients.end(); ite++){
int client_fd = *ite;
if(!can_socket_read(client_fd, 1)){
continue;
}
char buf[1024];
if(recv(client_fd, buf, sizeof(buf), 0) <= 0){
cout << "read client error, exit" << endl;
exit(1);
}
//cout << "process #" << getpid() << " (" << clients.size() << " clients) recv from client: " << buf << endl;
if(send(client_fd, buf, strlen(buf), 0) <= 0){
cout << "send data error, exit" << endl;
exit(1);
}
}
}
cout << "process #" << getpid() << " serving " << clients.size() << " clients" << endl;
}
}
void start_worker_process(int server_fd, int process_num){
for(int i = 0; i < process_num; i++){
pid_t pid = fork();
// child process
if(pid == 0){
process_cycle(server_fd);
exit(0);
}
// parent process
else if(pid == -1){
cout << "fork child process error" << endl;
exit(1);
}
else{
cout << "fork child process success: #" << pid << endl;
}
}
}
int main(int argc, char** argv){
if(argc <= 3){
cout << "usage: " << argv[0] << " " << endl
<< "port: the port to listen at" << endl
<< "single_process_mode: whether use the single process mode" << endl
<< "num_of_processes: if multiple processes mode, how many process we will create" << endl
<< "for example: " << argv[0] << " 1990 false 15" << endl;
exit(1);
}
int server_port = atoi(argv[1]);
char* single_process_mode = argv[2];
int num_of_processes = atoi(argv[3]);
bool is_single_process = !strcmp(single_process_mode, "true");
cout << "[config] " << (is_single_process? "single process" : "multiple processes") << " mode, "
<< "listening at " << server_port
<< ", create " << num_of_processes << " worker processes" << endl;
char* server_ip = argv[1];
cout << "[remark] multiple processes prototype. " << endl
<< "[remark] master process listen to get a socket fd(file descriptor), worker process accept and serve client." << endl
<< "[remark] this prototype also show the architecture swithing between multiple and single process." << endl;
// master process: bind and listen.
int server_fd = prepare_server_socket(server_port);
// worker process: accept and process.
if(is_single_process){
process_cycle(server_fd);
}
else{
start_worker_process(server_fd, num_of_processes);
}
for(int i = 0; i < num_of_processes; i++){
int status = 0;
pid_t pid = waitpid(-1, &status, 0);
cout << "child process #" << pid << " terminated" << endl;
}
cout << "server terminated" << endl;
close(server_fd);
return 0;
}
// test_client.cpp
#include
#include
#include
#include
#include
using namespace std;
#include
#include
#include
#include
int main(int argc, char** argv)
{
if(argc <= 3){
cout << "usage: " << argv[0] << " " << endl
<< "server_ip: the ip of server to connect" << endl
<< "server_port: the port of server to connect" << endl
<< "num_of_clients: how many client we will start" << endl
<< "for example: " << argv[0] << " 127.0.0.1 1990 1020" << endl;
exit(1);
}
char* server_ip = argv[1];
int server_port = atoi(argv[2]);
int num_of_clients = atoi(argv[3]);
vector clients;
for(int i = 0; i < num_of_clients; i++){
int client = socket(AF_INET, SOCK_STREAM, 0);
if(client == -1){
cout << "create socket error" << endl;
exit(1);
}
cout << "create socket success" << endl;
sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(server_port);
addr.sin_addr.s_addr = inet_addr(server_ip);
if(connect(client, (const struct sockaddr*)&addr, sizeof(addr)) == -1){
cout << "connect to server error" << endl;
exit(1);
}
cout << "connect server success" << endl;
clients.push_back(client);
}
const char msg[] = "hello, this is client";
char buf[1024];
memset(buf, 0, sizeof(buf));
memcpy(buf, msg, sizeof(msg));
while(true){
for(vector::iterator ite = clients.begin(); ite != clients.end(); ite++){
int client = *ite;
if(send(client, buf, sizeof(msg), 0) < 0){
cout << "send error" << endl;
exit(1);
}
if(recv(client, buf, sizeof(buf), 0) < 0){
cout << "recv error" << endl;
exit(1);
}
cout << "recv from server: " << buf << endl;
sleep(3);
}
sleep(120);
}
return 0;
}