MPU6050是InvenSense公司推出的全球首款整合性6轴运动处理组件,内带3轴陀螺仪和3轴加速度传感器,并且含有一个第二IIC接口,可用于连接外部磁力传感器,利用自带数字运动处理器(DMP: Digital Motion Processor)硬件加速引擎,通过主IIC接口,可以向应用端输出完整的9轴姿态融合演算数据。
有了DMP,我们可以使用InvenSense公司提供的运动处理资料库,非常方便的实现姿态解算,降低了运动处理运算对操作系统的负荷,同时大大降低了开发难度 。
MPU6050 的特点包括:
① 以数字形式输出 6 轴或 9 轴(需外接磁传感器)的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据(需 DMP 支持)。
② 具有 131 LSBs/°/sec 敏感度与全格感测范围为±250、±500、±1000 与±2000°/sec 的 3 轴角速度感测器(陀螺仪)。
③ 集成可程序控制,范围为±2g、±4g、±8g 和±16g 的 3 轴加速度传感器。
④ 移除加速器与陀螺仪轴间敏感度,降低设定给予的影响与感测器的飘移。
⑤ 自带数字运动处理(DMP: Digital Motion Processing)引擎可减少MCU复杂的融合演算数据、感测器同步化、姿势感应等的负荷。
⑥ 内建运作时间偏差与磁力感测器校正演算技术,免除了客户须另外进行校正的需求。
⑦ 自带一个数字温度传感器。
⑧ 带数字输入同步引脚(Sync pin)支持视频电子影相稳定技术与 GPS。
⑨ 可程序控制的中断(interrupt),支持姿势识别、摇摄、画面放大缩小、滚动、快速下降中断、high-G 中断、零动作感应、触击感应、摇动感应功能。
⑩ VDD 供电电压为 2.5V±5%、3.0V±5%、3.3V±5%;VLOGIC 可低至 1.8V± 5%。
⑪ 陀螺仪工作电流:5mA,陀螺仪待。
⑫ 自带 1024 字节 FIFO,有助于降低系统功。
⑬ 高达 400Khz 的 IIC 通信接口。
⑭ 超小封装尺寸:4x4x0.9mm(QFN)。
其中,SCL 和 SDA 是连接 MCU 的 IIC 接口,MCU 通过这个 IIC 接口来控制 MPU6050,另外还有一个 IIC 接口:AUX_CL 和 AUX_DA,这个接口可用来连接外部从设备,比如磁传感器,这样就可以组成一个九轴传感器。VLOGIC 是 IO 口电压,该引脚最低可以到 1.8V,我们一般直接接 VDD 即可。AD0 是从 IIC 接口(接 MCU)的地址控制引脚,该引脚控制IIC 地址的最低位。如果接 GND,则 MPU6050 的 IIC 地址是:0X68,如果接 VDD,则是0X69,注意:这里的地址是不包含数据传输的最低位的(最低位用来表示读写)!!
另:
①ATK-MPU6050 六轴传感器模块外观:
模块自带了 3.3V 超低压差稳压芯片,给 MPU6050 供电,因此外部供电可以选择:3.3V / 5V 都可以。模块通过 P1 排针与外部连接,引出了 VCC、GND、IIC_SDA、IIC_SCL、MPU_INT 和 MPU_AD0 等信号,其中,IIC_SDA 和 IIC_SCL 带了 4.7K上拉电阻,外部可以不用再加上拉电阻了,另外 MPU_AD0 自带了 10K 下拉电阻,当 AD0悬空时,默认 IIC 地址为(0X68)。
②ATK-MPU6050 模块原理图:
1 )初始化 IIC 接口
MPU6050 采用 IIC 与 STM32F1 通信,所以我们需要先初始化与 MPU6050 连接的 SDA和 SCL 数据线。
2 )复位 MPU6050
这一步让 MPU6050 内部所有寄存器恢复默认值,通过对电源管理寄存器 1(0X6B)的bit7 写 1 实现。 复位后,电源管理寄存器 1 恢复默认值(0X40),然后必须设置该寄存器为0X00,以唤醒 MPU6050,进入正常工作状态。
3 )设置角速度传感器(陀螺仪)和加速度传感器的满量程范围
这一步,我们设置两个传感器的满量程范围(FSR),分别通过陀螺仪配置寄存器(0X1B)和加速度传感器配置寄存器(0X1C)设置。我们一般设置陀螺仪的满量程范围为±2000dps,加速度传感器的满量程范围为±2g。
4 )设置其他参数
这里,我们还需要配置的参数有:关闭中断、关闭 AUX IIC 接口、禁止 FIFO、设置陀螺仪采样率和设置数字低通滤波器(DLPF)等。本章我们不用中断方式读取数据,所以关闭中断,然后也没用到 AUX IIC 接口外接其他传感器,所以也关闭这个接口。分别通过中断使能寄存器(0X38)和用户控制寄存器(0X6A)控制。MPU6050 可以使用 FIFO 存储传感器数据,不过本章我们没有用到,所以关闭所有 FIFO 通道,这个通过 FIFO 使能寄存器(0X23)控制,默认都是 0(即禁止 FIFO),所以用默认值就可以了。陀螺仪采样率通过采样率分频寄存器(0X19)控制,这个采样率我们一般设置为 50 即可。数字低通滤波器(DLPF)则通过配置寄存器(0X1A)设置,一般设置 DLPF 为带宽的 1/2 即可。
5 )配置系统时钟源并使能角速度传感器和加速度传感器
系统时钟源同样是通过电源管理寄存器 1(0X1B)来设置,该寄存器的最低三位用于设置系统时钟源选择,默认值是 0(内部 8M RC 震荡),不过我们一般设置为 1,选择 x 轴陀螺 PLL 作为时钟源,以获得更高精度的时钟。同时,使能角速度传感器和加速度传感器,这两个操作通过电源管理寄存器 2(0X6C)来设置,设置对应位为 0 即可开启。
至此,MPU6050 的初始化就完成了,可以正常工作了(其他未设置的寄存器全部采用默认值即可),接下来,我们就可以读取相关寄存器,得到加速度传感器、角速度传感器和温度传感器的数据了。不过,我们先简单介绍几个重要的寄存器。
①电源管理寄存器1(寄存器地址为 0X6B)
其中,DEVICE_RESET 位用来控制复位,设置为 1,复位 MPU6050,复位结束后,MPU硬件自动清零该位。SLEEEP 位用于控制 MPU6050 的工作模式,复位后,该位为 1,即进入了睡眠模式(低功耗),所以我们要清零该位,以进入正常工作模式。TEMP_DIS 用于设置是否使能温度传感器,设置为 0,则使能。最后 CLKSEL[2:0]用于选择系统时钟源,选择关系如下表所示:
默认是使用内部 8M RC 晶振的,精度不高,所以我们一般选择 X/Y/Z 轴陀螺作为参考的 PLL 作为时钟源,一般设置 CLKSEL=001 即可。
②陀螺仪配置寄存器(寄存器地址为0X1B)
该寄存器我们只关心 FS_SEL[1:0]这两个位,用于设置陀螺仪的满量程范围:0,±250°/S;1,±500°/S;2,±1000°/S;3,±2000°/S;我们一般设置为 3,即±2000°/S,因为陀螺仪的 ADC 为 16 位分辨率,所以得到灵敏度为:65536/4000=16.4LSB/(°/S)。
③加速度传感器配置寄存器(寄存器地址为0X1C)
该寄存器我们只关心 AFS_SEL[1:0]这两个位,用于设置加速度传感器的满量程范围:0,±2g;1,±4g;2,±8g;3,±16g;我们一般设置为 0,即±2g,因为加速度传感器的ADC 也是 16 位,所以得到灵敏度为:65536/4=16384LSB/g。
④ FIFO 使能寄存器(寄存器地址为0X23)
该寄存器用于控制 FIFO 使能,在简单读取传感器数据的时候,可以不用 FIFO,设置对应位为 0 即可禁止 FIFO,设置为 1,则使能 FIFO。注意加速度传感器的 3 个轴,全由 1个位(ACCEL_FIFO_EN)控制,只要该位置 1,则加速度传感器的三个通道都开启 FIFO了。
⑤陀螺仪采样率分频寄存器(寄存器地址为0X19)
该寄存器用于设置 MPU6050 的陀螺仪采样频率,计算公式为:
采样频率 = 陀螺仪输出频率 / (1+SMPLRT_DIV)
这里陀螺仪的输出频率,是 1Khz 或者 8Khz,与数字低通滤波器(DLPF)的设置有关,当 DLPF_CFG=0/7 的时候,频率为 8Khz,其他情况是 1Khz。而且 DLPF 滤波频率一般设置为采样率的一半。采样率,我们假定设置为 50Hz,那么 SMPLRT_DIV=1000/50-1=19。
⑥配置寄存器(寄存器地址为0X1A)
这里,我们主要关心数字低通滤波器(DLPF)的设置位,即:DLPF_CFG[2:0],加速度计和陀螺仪,都是根据这三个位的配置进行过滤的。DLPF_CFG 不同配置对应的过滤情况如下表所示:
这里的加速度传感器,输出速率(Fs)固定是 1Khz,而角速度传感器的输出速率(Fs),则根据 DLPF_CFG 的配置有所不同。一般我们设置角速度传感器的带宽为其采样率的一半,如前面所说的,如果设置采样率为 50Hz,那么带宽就应该设置为 25Hz,取近似值 20Hz,就应该设置 DLPF_CFG=100。
⑦电源管理寄存器2(0X6C)
该寄存器的 LP_WAKE_CTRL 用于控制低功耗时的唤醒频率,本章用不到。剩下的 6位,分别控制加速度和陀螺仪的 x/y/z 轴是否进入待机模式,这里我们全部都不进入待机模式,所以全部设置为 0 即可。
⑧陀螺仪数据输出寄存器(共6个寄存器,地址为0X43~0X48)
陀螺仪数据输出寄存器总共由6个寄存器组成,输出X/Y/Z三个轴的陀螺仪传感器数据,高字节在前,低字节在后。
⑨加速度传感器数据输出寄存器(6个,地址为0X3B~0X40)
加速度传感器数据输出寄存器总共由6个寄存器组成,输出X/Y/Z三个轴的加速度传感器值,高字节在前,低字节在后。
⑩温度传感器数据输出寄存器(0X41~0X42)
通过读取0X41(高8位)和0X42(低8位)寄存器得到,温度换算公式为:
Temperature = 36.53 + regval/340
其中,Temperature为计算得到的温度值,单位为℃,regval为从0X41和0X42读到的温度传感器值。
MPU6050 自带了数字运动处理器,即 DMP,并且,InvenSense 提供了一个 MPU6050 的嵌入式运动驱动库,结合 MPU6050 的 DMP,可以将我们的加速度传感器和角速度传感器的原始数据,直接转换成四元数输出,而得到四元数之后,就可以很方便的计算出欧拉角:航向角(yaw)、横滚角(roll)和俯仰角(pitch)。
使用内置的 DMP,大大简化了四轴的代码设计,且 MCU 不用进行姿态解算过程,大大降低了 MCU 的负担,从而有更多的时间去处理其他事件,提高系统实时性。
使用 MPU6050 的 DMP 输出的四元数是 q30 格式的,也就是浮点数放大了 2 的 30 次方倍。在换算成欧拉角之前,必须先将其转换为浮点数,也就是除以 2 的 30 次方,然后再进行计算,计算公式为:
q0=quat[0] / q30; //q30 格式转换为浮点数
q1=quat[1] / q30;
q2=quat[2] / q30;
q3=quat[3] / q30;
//计算得到俯仰角/横滚角/航向角
pitch=asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; //俯仰角
roll=atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; //横滚角
yaw=atan2(2*(q1q2 + q0q3),q0q0+q1q1-q2q2-q3q3) * 57.3; //航向角
其中 quat[0]~ quat[3]是 MPU6050 的 DMP 解算后的四元数,q30 格式,所以要除以一个2 的 30 次方,其中 q30 是一个常量:1073741824,即 2 的 30 次方,然后带入公式,计算出欧拉角。上述计算公式的 57.3 是弧度转换为角度,即 180/π,这样得到的结果就是以度(°)为单位的。关于四元数与欧拉角的公式推导,这里不进行详细说明。