leecode-triangle

题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is11(i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思路

	 * 动态规划--自下向上dp
	 * 
	 * 给定一个三角形,找出从顶到底的最小路径和,每一步可以从上一行
	 * 移动到下一行相邻的数字,
	 * 更新本行数字为:下一行最小的相邻数字+本行数字,如下实例6更新为6+1=7
    [                   
         [2],                 [2],              
        [3,4],              [3, 4],            [2],
       [6,5,7],      ==>   [7, 6, 10]     ==>  [9, 10]   ==>     [11]
      [4,1,8,3]
    ]
 
     * 自下向上 dp: 不需要额外的空间
     * dp[i][j] = min(dp[i+1][j], dp[i+1][j+1]) + triangle[i][j]
     * dp[i][j]: 表示到达 (i, j)最小路径的总和

java实现

public static int minimumTotal(ArrayList> triangle) {
        int rows = triangle.size();               // 行
        int cols = triangle.get(rows-1).size();   // 列
        int[][] dp = new int[rows][cols];
        for (int i = 0; i < cols; i++) {
            dp[rows-1][i] = triangle.get(rows-1).get(i); // 最底层的初始值即本身
        }
        for (int i = rows-2; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                dp[i][j] = Math.min(dp[i+1][j], dp[i+1][j+1]) + triangle.get(i).get(j);
            }
        }
        return dp[0][0];
    }

总结

自底向上找最短路径更方便。

你可能感兴趣的:(leetcode,算法,笔试,数据结构,java,leetcode)