在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法。
以下是本文目录大纲:
一.CountDownLatch用法
二.CyclicBarrier用法
三.Semaphore用法
四.Phaser
若有不正之处请多多谅解,并欢迎批评指正。
请尊重作者劳动成果,转载请标明原文链接:
http://www.cnblogs.com/dolphin0520/p/3920397.html
一.CountDownLatch用法
CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。
CountDownLatch类只提供了一个构造器:
1 |
public CountDownLatch( int count) { }; //参数count为计数值 |
然后下面这3个方法是CountDownLatch类中最重要的方法:
1 2 3 |
public void await() throws InterruptedException { }; //调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行 public boolean await( long timeout, TimeUnit unit) throws InterruptedException { }; //和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行 public void countDown() { }; //将count值减1 |
下面看一个例子大家就清楚CountDownLatch的用法了:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
public class Test { public static void main(String[] args) { final CountDownLatch latch = new CountDownLatch( 2 ); new Thread(){ public void run() { try { System.out.println( "子线程" +Thread.currentThread().getName()+ "正在执行" ); Thread.sleep( 3000 ); System.out.println( "子线程" +Thread.currentThread().getName()+ "执行完毕" ); latch.countDown(); } catch (InterruptedException e) { e.printStackTrace(); } }; }.start(); new Thread(){ public void run() { try { System.out.println( "子线程" +Thread.currentThread().getName()+ "正在执行" ); Thread.sleep( 3000 ); System.out.println( "子线程" +Thread.currentThread().getName()+ "执行完毕" ); latch.countDown(); } catch (InterruptedException e) { e.printStackTrace(); } }; }.start(); try { System.out.println( "等待2个子线程执行完毕..." ); latch.await(); System.out.println( "2个子线程已经执行完毕" ); System.out.println( "继续执行主线程" ); } catch (InterruptedException e) { e.printStackTrace(); } } } |
执行结果:
View Code
二.CyclicBarrier用法
字面意思回环栅栏,通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier可以被重用。我们暂且把这个状态就叫做barrier,当调用await()方法之后,线程就处于barrier了。
CyclicBarrier类位于java.util.concurrent包下,CyclicBarrier提供2个构造器:
1 2 3 4 5 |
public CyclicBarrier( int parties, Runnable barrierAction) { } public CyclicBarrier( int parties) { } |
参数parties指让多少个线程或者任务等待至barrier状态;参数barrierAction为当这些线程都达到barrier状态时会执行的内容。
然后CyclicBarrier中最重要的方法就是await方法,它有2个重载版本:
1 2 |
public int await() throws InterruptedException, BrokenBarrierException { }; public int await( long timeout, TimeUnit unit) throws InterruptedException,BrokenBarrierException,TimeoutException { }; |
第一个版本比较常用,用来挂起当前线程,直至所有线程都到达barrier状态再同时执行后续任务;
第二个版本是让这些线程等待至一定的时间,如果还有线程没有到达barrier状态就直接让到达barrier的线程执行后续任务。
下面举几个例子就明白了:
假若有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用CyclicBarrier了:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
public class Test { public static void main(String[] args) { int N = 4 ; CyclicBarrier barrier = new CyclicBarrier(N); for ( int i= 0 ;i new Writer(barrier).start(); } static class Writer extends Thread{ private CyclicBarrier cyclicBarrier; public Writer(CyclicBarrier cyclicBarrier) { this .cyclicBarrier = cyclicBarrier; } @Override public void run() { System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." ); try { Thread.sleep( 5000 ); //以睡眠来模拟写入数据操作 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" ); cyclicBarrier.await(); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e){ e.printStackTrace(); } System.out.println( "所有线程写入完毕,继续处理其他任务..." ); } } } |
执行结果:
View Code
从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。
当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。
如果说想在所有线程写入操作完之后,进行额外的其他操作可以为CyclicBarrier提供Runnable参数:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
public class Test { public static void main(String[] args) { int N = 4 ; CyclicBarrier barrier = new CyclicBarrier(N, new Runnable() { @Override public void run() { System.out.println( "当前线程" +Thread.currentThread().getName()); } }); for ( int i= 0 ;i new Writer(barrier).start(); } static class Writer extends Thread{ private CyclicBarrier cyclicBarrier; public Writer(CyclicBarrier cyclicBarrier) { this .cyclicBarrier = cyclicBarrier; } @Override public void run() { System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." ); try { Thread.sleep( 5000 ); //以睡眠来模拟写入数据操作 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" ); cyclicBarrier.await(); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e){ e.printStackTrace(); } System.out.println( "所有线程写入完毕,继续处理其他任务..." ); } } } |
运行结果:
View Code
从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。
下面看一下为await指定时间的效果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
public class Test { public static void main(String[] args) { int N = 4 ; CyclicBarrier barrier = new CyclicBarrier(N); for ( int i= 0 ;i if (i1 ) new Writer(barrier).start(); else { try { Thread.sleep( 5000 ); } catch (InterruptedException e) { e.printStackTrace(); } new Writer(barrier).start(); } } } static class Writer extends Thread{ private CyclicBarrier cyclicBarrier; public Writer(CyclicBarrier cyclicBarrier) { this .cyclicBarrier = cyclicBarrier; } @Override public void run() { System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." ); try { Thread.sleep( 5000 ); //以睡眠来模拟写入数据操作 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" ); try { cyclicBarrier.await( 2000 , TimeUnit.MILLISECONDS); } catch (TimeoutException e) { // TODO Auto-generated catch block e.printStackTrace(); } } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e){ e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+ "所有线程写入完毕,继续处理其他任务..." ); } } } |
执行结果:
View Code
上面的代码在main方法的for循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到barrier之后,等待了指定的时间发现第四个线程还没有达到barrier,就抛出异常并继续执行后面的任务。
另外CyclicBarrier是可以重用的,看下面这个例子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
public class Test { public static void main(String[] args) { int N = 4 ; CyclicBarrier barrier = new CyclicBarrier(N); for ( int i= 0 ;i new Writer(barrier).start(); } try { Thread.sleep( 25000 ); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println( "CyclicBarrier重用" ); for ( int i= 0 ;i new Writer(barrier).start(); } } static class Writer extends Thread{ private CyclicBarrier cyclicBarrier; public Writer(CyclicBarrier cyclicBarrier) { this .cyclicBarrier = cyclicBarrier; } @Override public void run() { System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." ); try { Thread.sleep( 5000 ); //以睡眠来模拟写入数据操作 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" ); cyclicBarrier.await(); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e){ e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+ "所有线程写入完毕,继续处理其他任务..." ); } } } |
执行结果:
View Code
从执行结果可以看出,在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用。而CountDownLatch无法进行重复使用。
三.Semaphore用法
Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
Semaphore类位于java.util.concurrent包下,它提供了2个构造器:
1 2 3 4 5 6 |
public Semaphore( int permits) { //参数permits表示许可数目,即同时可以允许多少线程进行访问 sync = new NonfairSync(permits); } public Semaphore( int permits, boolean fair) { //这个多了一个参数fair表示是否是公平的,即等待时间越久的越先获取许可 sync = (fair)? new FairSync(permits) : new NonfairSync(permits); } |
下面说一下Semaphore类中比较重要的几个方法,首先是acquire()、release()方法:
1 2 3 4 |
public void acquire() throws InterruptedException { } //获取一个许可 public void acquire( int permits) throws InterruptedException { } //获取permits个许可 public void release() { } //释放一个许可 public void release( int permits) { } //释放permits个许可 |
acquire()用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可。
release()用来释放许可。注意,在释放许可之前,必须先获获得许可。
这4个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法:
1 2 3 4 |
public boolean tryAcquire() { }; //尝试获取一个许可,若获取成功,则立即返回true,若获取失败,则立即返回false public boolean tryAcquire( long timeout, TimeUnit unit) throws InterruptedException { }; //尝试获取一个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false public boolean tryAcquire( int permits) { }; //尝试获取permits个许可,若获取成功,则立即返回true,若获取失败,则立即返回false public boolean tryAcquire( int permits, long timeout, TimeUnit unit) throws InterruptedException { }; //尝试获取permits个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false |
另外还可以通过availablePermits()方法得到可用的许可数目。
下面通过一个例子来看一下Semaphore的具体使用:
假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:
执行结果:
View Code
下面对上面说的三个辅助类进行一个总结:
1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:
CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;
而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;
另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。
2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。
四.Semaphore用法
从java7开始在concurrent包中加入了Phaser类,它几乎可以取代CountDownLatch和CyclicBarrier, 其功能更灵活,更强大,支持动态调整需要控制的线程数。下面以一个具体实例说明这个Phaser类的用处,相信理解这个例子后,其功能不言而喻
Sample 1
在有些场景下,我们希望控制多个线程的启动时机:例如在并发相关的单元测试中,有时需要控制线程的启动时机,以期获得最大程度的并发,通常我们会使用CountDownLatch,以下是使用Phaser的版本。
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import java.util.concurrent.Phaser; public class PhaserTest1 { public static void main(String args[]) { // final int count = 5 ; final Phaser phaser = new Phaser(count); for ( int i = 0 ; i < count; i++) { System.out.println( "starting thread, id: " + i); final Thread thread = new Thread( new Task(i, phaser)); thread.start(); } } public static class Task implements Runnable { // private final int id; private final Phaser phaser; public Task( int id, Phaser phaser) { this .id = id; this .phaser = phaser; } @Override public void run() { phaser.arriveAndAwaitAdvance(); System.out.println( "in Task.run(), phase: " + phaser.getPhase() + ", id: " + this .id); } } } |
以上例子中,由于线程是在一个循环中start,因此start的时机有一定的间隔。本例中这些线程实际开始工作的时机是在所有的线程都调用了phaser.arriveAndAwaitAdvance()之后。
此外,如果留心arriveAndAwaitAdvance()方法的签名,会发现它并没有抛出InterruptedException,实际上,即使 当前线程被中断,arriveAndAwaitAdvance()方法也不会返回,而是继续等待。如果在等待时希望可中断,或者可超时,那么需要使用以下 方法:
?
1 2 3 |
awaitAdvance(arrive()) // 等效于arriveAndAwaitAdvance() awaitAdvanceInterruptibly( int phase) awaitAdvanceInterruptibly( int phase, long timeout, TimeUnit unit) |
3.2 Sample 2
有些时候我们希望只有在某些外部条件满足时,才真正开始任务的执行,例如:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.concurrent.Phaser; public class PhaserTest2 { public static void main(String args[]) throws Exception { // final Phaser phaser = new Phaser( 1 ); for ( int i = 0 ; i < 5 ; i++) { phaser.register(); System.out.println( "starting thread, id: " + i); final Thread thread = new Thread( new Task(i, phaser)); thread.start(); } // System.out.println( "Press ENTER to continue" ); BufferedReader reader = new BufferedReader( new InputStreamReader(System.in)); reader.readLine(); phaser.arriveAndDeregister(); } public static class Task implements Runnable { // private final int id; private final Phaser phaser; public Task( int id, Phaser phaser) { this .id = id; this .phaser = phaser; } @Override public void run() { phaser.arriveAndAwaitAdvance(); System.out.println( "in Task.run(), phase: " + phaser.getPhase() + ", id: " + this .id); } } } |
以上例子中,只有当用户按下回车之后,任务才真正开始执行。需要注意的是,arriveAndDeregister()方法不会被阻塞,并且返回到达时的phase number(arrive方法也是如此)。
3.3 Sample 3
CyclicBarrier支持barrier action, Phaser同样也支持。不同之处是Phaser的barrier action需要改写onAdvance方法来进行定制。
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import java.util.concurrent.Phaser; public class PhaserTest3 { public static void main(String args[]) throws Exception { // final int count = 5 ; final int phaseToTerminate = 3 ; final Phaser phaser = new Phaser(count) { @Override protected boolean onAdvance( int phase, int registeredParties) { System.out.println( "====== " + phase + " ======" ); return phase >= phaseToTerminate || registeredParties == 0 ; } }; // for ( int i = 0 ; i < count; i++) { System.out.println( "starting thread, id: " + i); final Thread thread = new Thread( new Task(i, phaser)); thread.start(); } } public static class Task implements Runnable { // private final int id; private final Phaser phaser; public Task( int id, Phaser phaser) { this .id = id; this .phaser = phaser; } @Override public void run() { do { try { Thread.sleep( 500 ); } catch (InterruptedException e) { // NOP } System.out.println( "in Task.run(), phase: " + phaser.getPhase() + ", id: " + this .id); phaser.arriveAndAwaitAdvance(); } while (!phaser.isTerminated()); } } } |
本例中的barrier action只是简单地打印了一条信息,此外在超过指定的迭代次数后终止了Phaser。
3.4 Sample 4
在Smaple 3的例子中,主线程在其它工作线程结束之前已经终止。如果希望主线程等待这些工作线程结束,除了使用Thread.join()之外,也可以尝试以下的方式:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import java.util.concurrent.Phaser; public class PhaserTest4 { public static void main(String args[]) throws Exception { // final int count = 5 ; final int phaseToTerminate = 3 ; final Phaser phaser = new Phaser(count) { @Override protected boolean onAdvance( int phase, int registeredParties) { System.out.println( "====== " + phase + " ======" ); return phase == phaseToTerminate || registeredParties == 0 ; } }; // for ( int i = 0 ; i < count; i++) { System.out.println( "starting thread, id: " + i); final Thread thread = new Thread( new Task(i, phaser)); thread.start(); } // phaser.register(); while (!phaser.isTerminated()) { phaser.arriveAndAwaitAdvance(); } System.out.println( "done" ); } public static class Task implements Runnable { // private final int id; private final Phaser phaser; public Task( int id, Phaser phaser) { this .id = id; this .phaser = phaser; } @Override public void run() { while (!phaser.isTerminated()) { try { Thread.sleep( 500 ); } catch (InterruptedException e) { // NOP } System.out.println( "in Task.run(), phase: " + phaser.getPhase() + ", id: " + this .id); phaser.arriveAndAwaitAdvance(); } } } } |
如果希望主线程在特定的phase结束之后终止,那么可以在主线程中调用下述方法:
?
1 2 3 4 5 6 7 8 9 10 11 |
public static void awaitPhase(Phaser phaser, int phase) { int p = phaser.register(); // assumes caller not already registered while (p < phase) { if (phaser.isTerminated()) { break ; // ... deal with unexpected termination } else { p = phaser.arriveAndAwaitAdvance(); } } phaser.arriveAndDeregister(); } |
需要注意的是,awaitPhase方法中的if (phaser.isTerminated()) 分支里需要能够正确处理Phaser终止的情况。否则由于在Phaser终止之后, phaser.register()和arriveAndAwaitAdvance()方法均返回负值,那么上述方法可能陷入死循环。
3.5 Sample 5
以下对Phaser进行分层的例子:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import java.util.concurrent.Phaser; public class PhaserTest6 { // private static final int TASKS_PER_PHASER = 4 ; public static void main(String args[]) throws Exception { // final int phaseToTerminate = 3 ; final Phaser phaser = new Phaser() { @Override protected boolean onAdvance( int phase, int registeredParties) { System.out.println( "====== " + phase + " ======" ); return phase == phaseToTerminate || registeredParties == 0 ; } }; // final Task tasks[] = new Task[ 10 ]; build(tasks, 0 , tasks.length, phaser); for ( int i = 0 ; i < tasks.length; i++) { System.out.println( "starting thread, id: " + i); final Thread thread = new Thread(tasks[i]); thread.start(); } } public static void build(Task[] tasks, int lo, int hi, Phaser ph) { if (hi - lo > TASKS_PER_PHASER) { for ( int i = lo; i < hi; i += TASKS_PER_PHASER) { int j = Math.min(i + TASKS_PER_PHASER, hi); build(tasks, i, j, new Phaser(ph)); } } else { for ( int i = lo; i < hi; ++i) tasks[i] = new Task(i, ph); } } public static class Task implements Runnable { // private final int id; private final Phaser phaser; public Task( int id, Phaser phaser) { this .id = id; this .phaser = phaser; this .phaser.register(); } @Override public void run() { while (!phaser.isTerminated()) { try { Thread.sleep( 200 ); } catch (InterruptedException e) { // NOP } System.out.println( "in Task.run(), phase: " + phaser.getPhase() + ", id: " + this .id); phaser.arriveAndAwaitAdvance(); } } } } |
需要注意的是,TASKS_PER_PHASER的值取决于具体的Task实现。对于Task执行时间很短的场景(也就是竞争相对激烈),可以考虑使用较小的TASKS_PER_PHASER值,例如4。反之可以适当增大TASKS_PER_PHASER。
java8
DoubleAccumulator
DoubleAdder
LongAccumulator
LongAdder:分离热点,类似ConcurrentHashMap
StampedLock
AQS(AbstractQueueSynchronizer)、CAS锁、CLH锁
synchronize -> RenentrantLock -> StampedLock
Long -> AtomicLong -> LongAdder