ID3决策树(Java实现)

说明

参考文章-归纳决策树ID3(Java实现),完成代码编写。
在原代码的基础上补充了预测函数,实现利用模型对新数据进行分类预测。
作者对ID3决策树的介绍-ID3决策树

决策树采用xml文件保存,使用Dom4J类库,点击下载
让Dom4J支持按XPath选择节点,还得引入包jaxen.jar,点击下载
源代码汇总,点击下载

思路

ID3决策树(Java实现)_第1张图片

代码

输入文件采用ARFF格式,使用的训练数据文件如下:
train.arff

@relation weather.symbolic 
@attribute outlook {sunny,overcast,rainy} 
@attribute temperature {hot,mild,cool} 
@attribute humidity {high,normal} 
@attribute windy {TRUE,FALSE} 
@attribute play {yes,no} 

@data 
sunny,hot,high,FALSE,no 
sunny,hot,high,TRUE,no 
overcast,hot,high,FALSE,yes 
rainy,mild,high,FALSE,yes 
rainy,cool,normal,FALSE,yes 
rainy,cool,normal,TRUE,no 
overcast,cool,normal,TRUE,yes 
sunny,mild,high,FALSE,no 
sunny,cool,normal,FALSE,yes 
rainy,mild,normal,FALSE,yes 
sunny,mild,normal,TRUE,yes 
overcast,mild,high,TRUE,yes 
overcast,hot,normal,FALSE,yes 
rainy,mild,high,TRUE,no

ARFF(Attribute-Relation File Format):格式简单明了,分为两部分,第一部分交代属性及取值范围,第二部分则是数据部分(data)。
由于只是测试代码效果,测试集(predict.arff)也是上述数据,只是将类标相关的数据移除了。

ID3类

package ID3;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.lang.Character.Subset;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.dom4j.Document;
import org.dom4j.DocumentHelper;
import org.dom4j.Element;
import org.dom4j.io.OutputFormat;
import org.dom4j.io.XMLWriter;
import org.w3c.dom.NodeList;

public class ID3 {
    // 同时保留训练集和测试集的数据在模型中,防止训练集和测试集的列顺序不同
    private ArrayList trainAttribute = new ArrayList(); // 存储训练集属性的名称 
    private ArrayList> train_attributeValue = new ArrayList>(); // 存储训练集每个属性的取值 
    private ArrayList predictAttribute = new ArrayList(); // 存储测试集属性的名称 
    private ArrayList> predict_attributeValue = new ArrayList>(); // 存储测试集每个属性的取值 


    private ArrayList train_data = new ArrayList(); // 训练集数据 ,即arff文件中的data字符串
    private ArrayList predict_data = new ArrayList(); // 测试集数据

    private String[] preLable;

    int decatt; // 决策变量在属性集中的索引(即类标所在列) 
    public static final String patternString = "@attribute(.*)[{](.*?)[}]"; 
    //正则表达,其中*? 表示重复任意次,但尽可能少重复,防止匹配到更后面的"}"符号

    Document xmldoc; 
    Element root; 

    public ID3() { 
        //创建并初始化xml文件,以用于储存决策树结构
        xmldoc = DocumentHelper.createDocument(); 
        root = xmldoc.addElement("root"); 
        root.addElement("DecisionTree").addAttribute("value", "null"); 
    } 
    /**
     * 模型训练函数
     * @param class_name  类标变量
     * @param data_pathname 训练集
     * @return xml决策树文件
     */
    public Document train(String class_name,String data_pathname){
        read_trainARFF(new File(data_pathname)); 
        setDec(class_name);
        LinkedList ll=new LinkedList(); //LinkList用于增删比ArrayList有优势
        for(int i=0;iif(i!=decatt) ll.add(i);  //防止类别变量不在最后一列发生错误 
        } 

        ArrayList al=new ArrayList(); 
        for(int i=0;i"DecisionTree", "null", al, ll);
        return xmldoc;
    }

    /**
     * 预测/分类函数(利用保留在类里的xml决策时模型进行预测)
     * @param data_pathname  测试集
     * @return 预测结果集
     */
    public String[] predict(String data_pathname){
        read_predictARFF(new File(data_pathname)); 
        preLable=new String[predict_data.size()];

        ArrayList subset=new ArrayList();

        for(int i=0;i"DecisionTree");

        giveLable(DecisionTree, subset);
        return preLable;

    }
    /**
     * 用于计算分类结果的递归函数
     * @param node 节点
     * @param subset 子集(存储序号)
     */
    public void giveLable(Element node, ArrayList subset) {
        List list=node.elements();

        if (list.size()==0) {   //叶子节点
            System.out.println("节点:"+node.getName()+"是叶子节点");
            String lable=node.getTextTrim();
            for(int index:subset ){
                preLable[index]=lable;
            }
        }else{  //非叶子节点
            for(Element e:list){
                String name=e.getName();
                String value=e.attribute("value").getValue();
                int index=predictAttribute.indexOf(name);
                ArrayList temp=new ArrayList();
                for(int i=0;i//筛选subset
                    if(predict_data.get(subset.get(i))[index].equals(value)){
                        temp.add(subset.get(i));
                    }
                }
                giveLable(e, temp);
            }
        }
    }

    //读取arff文件,给attribute、attributevalue、data赋值 
    public void read_trainARFF(File file) { 
        try { 
            FileReader fr = new FileReader(file); 
            BufferedReader br = new BufferedReader(fr); 
            String line; 
            Pattern pattern = Pattern.compile(patternString); 
            while ((line = br.readLine()) != null) { 
                Matcher matcher = pattern.matcher(line); 
                if (matcher.find()) { 
                    trainAttribute.add(matcher.group(1).trim()); //获取第一个括号里的内容
                    //涉及取值,尽量加.trim(),后面也可以看到,即使是换行符也可能会造成字符串不相等
                    String[] values = matcher.group(2).split(","); 
                    ArrayList al = new ArrayList(values.length); 
                    for (String value : values) { 
                        al.add(value.trim()); 
                    } 
                    train_attributeValue.add(al); 
                } else if (line.startsWith("@data")) { 
                    while ((line = br.readLine()) != null) { 
                        if(line=="") 
                            continue; 
                        String[] row = line.split(","); 
                        train_data.add(row); 
                    } 
                } else { 
                    continue; 
                } 
            } 
            br.close(); 
        } catch (IOException e1) { 
            e1.printStackTrace(); 
        } 
    } 

    //读取arff文件,给attribute、attributevalue、data赋值 
    public void read_predictARFF(File file) { 
        try { 
            FileReader fr = new FileReader(file); 
            BufferedReader br = new BufferedReader(fr); 
            String line; 
            Pattern pattern = Pattern.compile(patternString); 
            while ((line = br.readLine()) != null) { 
                Matcher matcher = pattern.matcher(line); 
                if (matcher.find()) { 
                    predictAttribute.add(matcher.group(1).trim()); //获取第一个括号里的内容
                    //涉及取值,尽量加.trim(),后面也可以看到,即使是换行符也可能会造成字符串不相等
                    String[] values = matcher.group(2).split(","); 
                    ArrayList al = new ArrayList(values.length); 
                    for (String value : values) { 
                        al.add(value.trim()); 
                    } 
                    predict_attributeValue.add(al); 
                } else if (line.startsWith("@data")) { 
                    while ((line = br.readLine()) != null) { 
                        if(line=="") 
                            continue; 
                        String[] row = line.split(","); 
                        predict_data.add(row); 
                    } 
                } else { 
                    continue; 
                } 
            } 
            br.close(); 
        } catch (IOException e1) { 
            e1.printStackTrace(); 
        } 
    } 

    //设置决策变量 
    public void setDec(int n) { 
        if (n < 0 || n >= trainAttribute.size()) { 
            System.err.println("决策变量指定错误。"); 
            System.exit(2); 
        } 
        decatt = n; 
    } 
    public void setDec(String name) { 
        int n = trainAttribute.indexOf(name); 
        setDec(n); 
    }   

    //给一个样本(数组中是各种情况的计数),计算它的熵 
    public double getEntropy(int[] arr) { 
        double entropy = 0.0; 
        int sum = 0; 
        for (int i = 0; i < arr.length; i++) { //关于Double.MIN_VALUE好像和浮点精度有关,不是很懂
            entropy -= arr[i] * Math.log(arr[i]+Double.MIN_VALUE)/Math.log(2); 
            sum += arr[i]; 
        } 
        entropy += sum * Math.log(sum+Double.MIN_VALUE)/Math.log(2); 
        entropy /= sum; 
        return entropy; 
    } 
    //给一个样本数组及样本的算术和,计算它的熵 
    public double getEntropy(int[] arr, int sum) { 
        double entropy = 0.0; 
        for (int i = 0; i < arr.length; i++) { 
            entropy -= arr[i] * Math.log(arr[i]+Double.MIN_VALUE)/Math.log(2); 
        } 
        entropy += sum * Math.log(sum+Double.MIN_VALUE)/Math.log(2); 
        entropy /= sum; 
        return entropy; 
    } 

    //判断类标是否统一,统一则之后即为叶节点(也可以设置为类别比例达到某一程度等其他指标)
    public boolean infoPure(ArrayList subset) { 
        String value = train_data.get(subset.get(0))[decatt]; 
        for (int i = 1; i < subset.size(); i++) { 
            String next=train_data.get(subset.get(i))[decatt]; 
            if (!value.trim().equals(next.trim())) 
                return false; 
        } 
        return true; 
    } 

    // 给定原始数据的子集(subset中存储行号),当以第index个属性为节点时计算它的信息熵 
    public double calNodeEntropy(ArrayList subset, int index) { 
        int sum = subset.size(); 
        //System.out.println("sum="+sum);
        //System.out.println("index="+index);
        double entropy = 0.0; 
        int[][] info = new int[train_attributeValue.get(index).size()][]; 
        for (int i = 0; i < info.length; i++) 
            info[i] = new int[train_attributeValue.get(decatt).size()]; 
        int[] count = new int[train_attributeValue.get(index).size()]; 
        for (int i = 0; i < sum; i++) { 
            int n = subset.get(i); 
            String nodevalue = train_data.get(n)[index]; 
            int nodeind = train_attributeValue.get(index).indexOf(nodevalue); 
            count[nodeind]++; 
            String decvalue = train_data.get(n)[decatt]; 
            //System.out.println(attributevalue.get(decatt).indexOf("no"));
            int decind = train_attributeValue.get(decatt).indexOf(decvalue.trim()); 

            info[nodeind][decind]++; 
        } 
        for (int i = 0; i < info.length; i++) { 
            entropy += getEntropy(info[i]) * count[i] / sum; 
        } 
        return entropy; 
    } 


    /**
     * 构建决策树 (核心函数)
     * @param node  节点名称
     * @param value 节点值 
     * @param subset 数据子集
     * @param selatt 属性子集
     */
    public void buildDT(String node, String value, ArrayList subset, 
            LinkedList selatt) { 
        Element ele = null; 
        @SuppressWarnings("unchecked") 
        List list = root.selectNodes("//"+node); 
        Iterator iter=list.iterator(); 
        while(iter.hasNext()){ 
            ele=iter.next(); 
            if(ele.attributeValue("value").equals(value)) 
                break; 
        } 
        if (infoPure(subset)) { 
            ele.setText(train_data.get(subset.get(0))[decatt]); //类标单一,直接写分类
            return; 
        } 
        int minIndex = -1; 
        double minEntropy = Double.MAX_VALUE; 
        for (int i = 0; i < selatt.size(); i++) { 
            if (i == decatt) 
                continue;

            double entropy = calNodeEntropy(subset, selatt.get(i)); 
            if (entropy < minEntropy) { 
                minIndex = selatt.get(i); 
                minEntropy = entropy; 
            } 
        } 
        String nodeName= trainAttribute.get(minIndex); 
        selatt.remove(new Integer(minIndex)); 
        ArrayList attvalues = train_attributeValue.get(minIndex); 
        for (String val : attvalues) { 
            //System.out.println(nodeName+"="+val);
            ele.addElement(nodeName).addAttribute("value", val); 
            ArrayList al = new ArrayList(); 
            for (int i = 0; i < subset.size(); i++) { 
                if (train_data.get(subset.get(i))[minIndex].equals(val)) { 
                    al.add(subset.get(i)); 
                } 
            } 
            buildDT(nodeName, val, al, selatt); 
        } 
    } 


    /**
     * 把xml写入文件 
     * @param filename
     */
    public void writeXML(String filename) { 
        try { 
            File file = new File(filename); 
            if (!file.exists()) 
                file.createNewFile(); 
            FileWriter fw = new FileWriter(file); 
            OutputFormat format = OutputFormat.createPrettyPrint(); // 美化格式 
            XMLWriter output = new XMLWriter(fw, format); 
            output.write(xmldoc); 
            output.close(); 
        } catch (IOException e) { 
            System.out.println(e.getMessage()); 
        } 
    } 
}

主函数

package ID3;


public class Main {
    public static void main(String[] args) {
        ID3 inst=new ID3();
        inst.train("play", "files/ID3/train.arff");
        inst.writeXML("files/ID3/ID3_Tree.xml"); 
        String[] preLable=inst.predict("files/ID3/predict.arff");
        for(int i=0;iout.println(i+preLable[i]);
        }   
    }
}

决策树xml文件



<root>
  <DecisionTree value="null">
    <outlook value="sunny">
      <humidity value="high">nohumidity>
      <humidity value="normal">yeshumidity>
    outlook>
    <outlook value="overcast">yesoutlook>
    <outlook value="rainy">
      <windy value="TRUE">nowindy>
      <windy value="FALSE">yeswindy>
    outlook>
  DecisionTree>
root>

你可能感兴趣的:(Java,算法实现)