- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- MATLAB代码实现了一个图形用户界面(GUI)程序,主要用于处理与水的物理性质相关的计算和绘图任务
go5463158465
MATLAB专栏深度学习算法matlab前端javascript
functionvarargout=ruanjian(varargin)%RUANJIANMATLABcodeforruanjian.fig%RUANJIAN,byitself,createsanewRUANJIANorraisestheexisting%singleton*.%%H=RUANJIANreturnsthehandletoanewRUANJIANorthehandleto%theex
- Audio-Visual Speech Enhancement(视听语音增强)领域近三年研究进展与国内团队及手机厂商动态分析
AndrewHZ
深度学习新浪潮智能手机算法计算机视觉硬件架构硬件工程智能硬件
一、视听语音增强领域近三年研究进展多模态融合与模型轻量化多模态特征融合:中国科学技术大学团队提出通过引入超声舌头图像和唇部视频的联合建模,结合知识蒸馏技术,在训练阶段利用教师模型传递舌部运动知识,从而在推断时仅依赖唇部视频即可提升语音增强效果。此外,中科院声学所提出基于泰勒展开的模型架构,将幅度-相位解耦与空间-谱域解耦重新建模,提升算法可解释性并优化性能。轻量化模型设计:中国科大与腾讯天籁实验室
- 一文理解大模型,并对当前流行模型做对比
Jing_saveSlave
AIai人工智能chatgpt
什么是大模型?大模型就像是一个“超级智能大脑”,它通过海量数据和复杂的计算结构(比如神经网络)学习人类语言、图像、声音等信息的规律。它的核心特点是参数数量极其庞大(比如千亿甚至万亿级),这些参数可以理解为大脑中的“神经元连接”,参数越多,模型越“聪明”,能处理的任务也更复杂。举个例子:小模型:像一个小学生,能解决简单的数学题,但遇到复杂问题容易卡壳。大模型:像一位大学教授,不仅能解数学题,还能写诗
- canvas 添加html元素,给canvas添加内容
云舞空城
canvas添加html元素
画布是一个矩形区域,您可以控制其每一像素。canvas拥有多种绘制路径、矩形、圆形、字符以及添加图像的方法。创建Canvas元素向HTML5页面添加canvas元素。规定元素的id、宽度和高度:通过JavaScript来绘制canvas元素本身是没有canvas画布与画布内容都缩小如何实现?如何将canvas复制给另外一个canvascanvas怎么根据坐标获取上面的内容html5canvas清除
- 推荐学习图像处理的入门书:《Python图像处理实战》
天飓
学习感悟学习图像处理python
《Python图像处理实战》是一本全面介绍Python图像处理技术的实用指南,是由人民邮电出版社于2020年12月出版。这本书的作者桑迪潘·戴伊是一位兴趣广泛的数据科学家,主要研究机器学习、深度学习、图像处理和计算机视觉。在《Python图像处理实战》一书中,作者主要介绍了如何用Python图像处理库(如PIL、python-opencv、Scipy等),机器学习库(scikit-learn)和深
- 使用 OpenCV 和 Python 对图像进行卡通化
无水先生
AI原理和python实现人工智能综合opencvpython人工智能
关键词:OpenCVlibrarytoconvertimagestocartoons目录一、说明二、OpenCV2.1要求支持库2.2方法2.3实施和执行三、定义卡通化函数3.1添加按钮3.2保存图像四、结论一、说明在本文中,我们将构建一个有趣的应用程序,将提供给它的图像卡通化。为了构建这个卡通化应用程序,我们将使用python和OpenCV。这是机器学习令人兴奋和激动的应用程序之一。在构建此应用
- 3D机器视觉的类型、应用和未来趋势
视觉人机器视觉
机器视觉3D3d人工智能计算机视觉c#前端
3D机器视觉的类型、应用和未来趋势类型3D机器视觉技术主要分为以下几类:立体视觉(StereoVision)通过两个或多个摄像头从不同角度捕捉图像,利用视差计算深度信息,生成3D模型。结构光(StructuredLight)使用投影仪将特定光图案投射到物体表面,通过摄像头捕捉变形图案,计算物体形状和深度。飞行时间(TimeofFlight,ToF)通过测量光脉冲从发射到反射回传感器的时间,计算物体
- MATLAB中count函数用法
jk_101
Matlabmatlab开发语言
目录语法说明示例对出现次数计数使用模式对数字和字母进行计数多个子字符串的所有出现次数忽略大小写对字符向量中的子字符串进行计数count函数的功能是计算字符串中模式的出现次数。语法A=count(str,pat)A=count(str,pat,'IgnoreCase',true)说明A=count(str,pat)返回pat在str中的出现次数。如果pat是包含多个模式的数组,则count返回pat
- 基于图像处理的裂缝宽度检测系统-matlab
人工智能专属驿站
计算机视觉图像处理人工智能
图像处理技术广泛地应用于桥梁、房屋、道路等工程施工中出现的表面裂缝,利用数字图像处理技术来测量结构物表面裂缝宽度是一种无损检测方法.基于图像处理的裂缝宽度检测系统需采用的图像处理算法有:(1)读取裂缝图像;(2)图像转化为灰度图像;(3)图像的增强;(4)平滑滤波;(5)阈值分割;(6)形态学去噪;(7)边缘检测(Canny算子);(8)边缘坐标点的提取;结果见:源程序见:基于图像处理的裂缝宽度检
- ORB-SLAM3的源码学习: Settings.cc:Settings::readImageInfo读取图像信息
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉opencvubuntuc++人工智能学习
前言简单总结一下:这个函数的主要目的是从配置文件中读取和设置与相机图像尺寸相关的各种参数。它会根据需要调整图像的宽度和高度,并根据这些调整更新相机的校准参数。如果是立体相机或带IMU的相机,还会同时更新第二个相机的校准参数。最终,这些调整确保图像和相机校准信息的一致性。1.函数声明voidSettings::readImageInfo(cv::FileStorage&fSettings)2.函数定
- 计算机视觉中图像的基础认知
全栈你个大西瓜
人工智能计算机视觉人工智能图像基本属性RGB三通道彩色单通道灰度图像OpenCVMatplotlib
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络一、图像/视频的基本属性在计算机视觉中,图像和视频的本质是多维数值矩阵。图像或视频数据的一些基本属性。宽度(W)和高度(H)定义了图像的像素分辨率,单位通常是像素。例如,一张1920x1080的图像有1920列(
- 通过MATLAB/Simulink平台,使用时域分析法评估一个典型控制系统的响应速度性能指标
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏simulinkmatlab
目录基于Simulink的时域分析法评估系统的响应速度性能指标1.背景介绍1.1项目背景1.2系统描述1.3应用场景2.系统架构设计2.1系统框图2.2数学模型3.Simulink仿真模型步骤3.1创建Simulink模型3.2添加模块3.2.1阶跃输入模块3.2.2系统模型模块3.2.3输出显示模块3.2.4数据记录模块3.3连接模块3.4设置仿真参数3.5运行仿真4.响应速度性能指标计算5.参
- Cameralink转SDI接口转换器
昆山森启智能科技有限公司
1.概述Cameralink转SDI接口转换器(简称转换器)是基于FPGA设计的一款多功能视频处理设备,具有丰富的硬件资源和外围接口。转换器将Cameralink接口输入的图像数据转成SDI图像输出,同时还可实现数据格式转换,帧率变换,分辨率变换,OSD,缩放,开窗,增强等图像预处理功能。2.技术特性2.1主要功能a.支持Cameralink视频输入(支持多种分辨率默认1080p@30hz)b.支
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习机器学习人工智能音视频自然语言处理量子深度学习量子学习未来
一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻?各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。想象这样一个场景:你现在训练一个GPT-5级别的模型,不需要耗费价值上亿美元的算力资源,不需要等待数周的训练时间,甚至不需要纠结于模型参数是否过拟合。这就是量子深度学
- halcon的Blob分析方法
斯人已去忆犹在
计算机视觉人工智能图像处理
阈值分割法图像分割常用方法就是阈值分割法,它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤。阈值分割法是一种传统的最常用的图像分割方法,特别适用于目标和背景占据不同灰度级范围的图像。阈值分割是一种按图像像素灰度幅度进行分割的方法,把图像的灰度分成不同的等级,然后用设置灰度门限(阈值)的方法确定有意义的区域或要分割物体的边界。阈值分割的优点是计算简单、运算效率较高、速度快。阈值分割的几个难
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- matlab 延迟算子,时间序列分析-----2---时间序列预处理
这块必被安排
matlab延迟算子
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。1、描述性时序分析通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动发展过程:1)早期的频
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- 智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法
智能算法研学社(Jack旭)
智能优化算法应用图像增强算法计算机视觉人工智能
智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码文章目录智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码1.全局双伽马校正2.群居蜘蛛算法3.适应度函数设计4.实验与算法结果5.参考文献6.Matlab代码摘要:本文主要介绍基于群居蜘蛛算法与双伽马校正的图像自适应增强算法。1.全局双伽马校正设图像的灰度值范围被归一化到[0,1]范围之内,基于全局
- 天呐!原来我们每天都在用的AI生图,背后竟是如此“粗暴”的原理?!(附源码运行显示)
lizhijianwill
人工智能深度学习机器学习
天呐!原来我们每天都在用的AI生图,背后竟是如此“粗暴”的原理?!你有没有想过,那些让设计师集体失业、让普通人秒变艺术家的AI绘画工具,它们到底是怎么“画”出那些以假乱真的图像的?今天,就让我们一起揭开AI绘画的神秘面纱,看看它背后究竟隐藏着怎样的“魔法”!1.AI绘画?不,其实是“噪声”的艺术!想象一下,你有一张干净的白纸,想要在上面画出一只可爱的猫咪。你会怎么做?一笔一笔地勾勒线条,一点一点
- 高级前端工程师Vue面试题
盼盼盼
面试题前端前端
HTML/CSS1.解释HTML5中的元素及其用途。元素用于通过JavaScript绘制图形,比如图表、图像处理等。它提供了一个图形上下文,可以进行2D图形绘制。2.CSS中display:none和visibility:hidden有什么区别?display:none会将元素从文档流中完全移除,不占据空间。而visibility:hidden则元素依然占据空间,只是变得不可见。3.描述CSSFl
- hunyuan-DiT模型部署指南
算家云
模型构建ComfyUI图片生成大模型人工智能pytorchAIGC
一、介绍Hunyuan-DiT是由腾讯混元推出的扩散模型,支持中文和英文双语输入,其他开源模型相比,Hunyuan-DiT在中文到图像生成方面树立了新的水平。二、部署流程环境要求:所需的最小GPU内存为11GB,建议使用具有32GB内存的GPU,以获得更好的生成质量。1.部署ComfyUI本篇的模型部署是在ComfyUI的基础上进行,如果没有部署过ComfyUI,请按照下面流程先进行部署,如已安装
- Python 爬虫验证码识别
acheding
pythonpython爬虫ocr
在我们进行爬虫的过程中,经常会碰到有些网站会时不时弹出来验证码识别。我们该如何解决呢?这里分享2种我尝试过的方法。0.验证码示例1.OpenCV+pytesseract使用Python中的OpenCV库进行图像预处理(边缘保留滤波、灰度化、二值化、形态学操作和逻辑运算),然后结合pytesseract进行文字识别。pytesseract需要配合安装在本地的tesseract-ocr.exe文件一起
- 扫描线/矩形面积并
一条大祥脚
android算法
扫描线的思想很早就会了,所以一直以为这个板子自己会了,但实际上并没有,这题还是不简单。首先,扫描线的思想很简单,就是当我们要处理多维的问题时,我们可以对其中一个维度进行排序,然后用数据结构维护剩下的维度,这样可以问题降低一个来考虑。当然实际上我们没有凭空吃掉一个维度,降低的维度实际上是被我们放到时间维上了。比如我们如果要求一个不规则形状的二维图像的面积,我们可以对x轴维度排序,然后y轴在任意时刻都
- 基于遗传算法求解带有时间窗、车载容量限制、多车辆、单配送中心路径优化VRPTW(多约束)matlab代码
天天Matlab科研工作室
智能优化算法matlab仿真无人机matlab仿真电子资源matlab算法自动驾驶
1数学模型(1)有关模型的说明和假设1)模型中的已知量有:各需求点的位置坐标、各需求点的物料需求数量,各需求点的物料的到达时间要求,配送中心到各需求点的最短行驶距离,各需求点互相之间的最短运输距离。2)现场调查发现,需要配送的物料是可以混装在同一物料架上的,且各需求点需要的物料数量小于物料仓库的库存量。3)忽略在配送过程中车辆遇到的拥挤排队等不利于生产进行的外界因素,也就是说整个装配车间正常运行。
- 多语言实现图像生成的API调用指南
IT·小灰灰
人工智能数据挖掘深度学习语言模型图像处理AI作画
在现代软件开发中,API(应用程序编程接口)的使用变得越来越普遍。无论是JavaScript、Python、Go还是Java,开发者们都需要与各种API进行交互以实现特定的功能。本文将通过一个具体的例子,展示如何使用不同的编程语言调用一个图像生成的API,并生成一幅描述海岛的图像。目录API获取方式正文1.JavaScript实现2.Python实现3.Go实现4.Java实现结语API获取方式前
- LightGBM+NRBO-Transformer-BiLSTM多变量回归预测 Matlab代码
前程算法屋
私信获取源码transformer回归matlab
LightGBM+NRBO-Transformer-BiLSTM多变量回归预测Matlab代码一、引言1.1、研究背景与意义在现代数据科学领域,多变量回归预测问题一直是一个研究热点。随着互联网和物联网技术的迅速发展,数据量呈指数级增长,如何从这些海量数据中提取有用的信息,并进行准确预测,成为了一个亟待解决的问题。多变量回归预测模型在金融风险管理、气象预报、医疗健康等多个领域具有广泛的应用。例如,在
- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出