最近在看决策树的模型,其中涉及到信息熵的计算,这里东西是由信号处理中来的,理论部分我就不再重复前人的东西了,下面给出两个简单的公式:
当然学习过信号与系统的童鞋一定觉得这不是香农提出的东西吗?O(∩_∩)O~没错,就是这个东西,只不过我们用在了机器学习上,好了下面就看代码吧,这些代码也很简单,我们知道信息熵越大表示所含信息量越多。
下面是计算信息熵的方法,以及测试代码:
import math
def cacShannonEnt(dataset):
numEntries = len(dataset)
labelCounts = {}
for featVec in dataset:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] +=1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob*math.log(prob, 2)
return shannonEnt
def CreateDataSet():
dataset = [[1, 1, 'yes' ],
[1, 1, 'yes' ],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataset, labels
myDat,labels = CreateDataSet()
print(cacShannonEnt(myDat))