- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 动态图神经网络在社交网络演化分析中的应用
AI大模型应用实战
神经网络网络phpai
动态图神经网络在社交网络演化分析中的应用关键词:动态图神经网络、社交网络演化分析、图深度学习、时间序列分析、网络动力学摘要:本文深入探讨了动态图神经网络在社交网络演化分析中的应用。首先介绍了相关背景知识,包括目的范围、预期读者等。接着详细阐述了核心概念,如动态图神经网络的原理和架构,并通过示意图和流程图进行直观展示。对核心算法原理进行了深入讲解,结合Python代码给出具体操作步骤。同时,介绍了相
- AAAI2022国际顶会Workshop将会讨论些什么?
AINLPer
国际会议自然语言处理深度学习自然语言处理人工智能机器学习神经网络
来源:AINLPer微信公众号(每日论文干货分享!!)编辑:ShuYini校稿:ShuYini时间:2021-12-091、引言 目前关于AAAI2022的论文List还没有贴出来,但是目前的WorkShop的日程已经出来了,今天整理了一下给大家分享。本次AAAI2022研讨会计划于2022年2月28日至3月1日,共有39个。其中在技术研究领域涉及:强化学习、图神经网络、交互式机器学习、模型
- 图神经网络(GNN)模型的基本原理
xiaocai_6666
神经网络人工智能深度学习
一、概述 在人工智能领域,数据的多样性促使研究人员不断探索新的模型与算法。传统的神经网络在处理像图像、文本这类具有固定结构的数据时表现出色,但面对具有不规则拓扑结构的图数据,如社交网络、化学分子结构、知识图谱等,却显得力不从心。 图神经网络(GraphNeuralNetworks,GNN)是一种直接在图结构数据上运行的神经网络,用于处理节点、边或整个图的特征信息。其核心思想是通过聚合邻域节点的
- 《A Gentle Introduction to Graph Neural Networks》
欧先生^_^
人工智能
这篇《AGentleIntroductiontoGraphNeuralNetworks》是一篇非常经典且对新手友好的图神经网络入门文章。我将为你深入浅出地解读它的核心思想、关键概念和重要性。这篇论文(更像是一篇博客文章或教程)的主要目的不是提出新的模型,而是系统性地、直观地解释GNN到底是什么,为什么需要它,以及它是如何工作的。我会将解读分为以下几个部分:核心动机:为什么我们需要GNN?核心思想:
- 图注意力卷积神经网络GAT在无线通信网络拓扑推理中的应用
zzc921
无线通信网络拓扑推理cnn人工智能神经网络无线通信网络拓扑推理WCNAGCNGAT
如果已经编写好了GCN的程序,改写GAT的程序是很方便的,torch_geometric.nn下既有一般图神经网络GCNConv包,也有图注意力神经网络GATConv包程序:#作者:zhouzhichao#创建时间:25年6月10日#内容:比较GAT和GCN在无线通信网络拓扑推理中的效果importwarningswarnings.simplefilter(action='ignore',cate
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- 深度解析六大AI爬虫工具:crawl4ai、FireCrawl、Scrapegraph-ai、Jina、SearXNG、Tavily技术对比与实战指南
一、引言在AI大模型时代,数据获取与处理是构建智能应用的核心环节。传统爬虫面临技术门槛高、反爬应对复杂、动态内容处理困难等挑战,而AI驱动的爬虫工具通过融合大语言模型(LLM)、图神经网络、自动化解析等技术,正在重塑数据抓取范式。本文将深度测评6款主流AI爬虫工具,从技术原理、核心功能、实战场景到性能对比,为开发者提供一站式选型指南。二、六大AI爬虫工具深度解析1.FireCrawl:LLM就绪数
- 基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
人工智能深度学习llm神经网络
在企业数字化转型进程中,非结构化文本数据的处理与分析已成为核心技术挑战。传统自然语言处理方法在处理客户反馈、社交媒体内容和内部文档等复杂数据集时,往往难以有效捕获文本间的深层语义关联和结构化关系。大型概念模型(LargeConceptModels,LCMs)与图神经网络的融合为这一挑战提供了创新解决方案,通过构建基于LangGraph的混合符号-语义处理管道,实现了更精准的情感分析、实体识别和主题
- 论文研读 | 解耦动态时空图神经网络交通预测
时空大数据小组
深度学习交通物流时序数据库
DecoupledDynamicSpatial-TemporalGraphNeuralNetworkforTrafficForecasting本文是由中科院大学2022年发表于VLDB会议的一篇文章,作者创新地提出了一种解耦时空框架——DSTF,提升了模型在交通流预测任务中的性能,并在两个真实数据集上进行了验证。作者通过将先验知识融合进模型结构中,从而提升模型性能的思路值得借鉴,以下对论文进行分享
- 【时空图神经网络 & 交通】相关模型2:STSGCN | 时空同步图卷积网络 | 空间相关性,时间相关性,空间-时间异质性
追光者♂
百题千解计划(项目实战案例)STSGCN空间-时间同步图卷积模块STSGCM深度学习人工智能Traffic空间-时间异质性
注:仅学习使用~前情提要:【时空图神经网络&交通】相关模型1:STGCN|完全卷积结构,高效的图卷积近似,瓶颈策略|时间门控卷积层:GLU(GatedLinearUnit),一种特殊的非线性门控单元目录STSGCN-2020年1.1背景1.2模型1.2.1问题背景:现有模型存在的问题1.2.2模型1.3问答Q1:STSGCM补充:构造局部时空图的方式(LocalizedSpatial-Tempor
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- 基于知识图谱的智能推荐系统实现
AGI大模型与大数据研究院
AI大模型应用开发实战知识图谱人工智能ai
基于知识图谱的智能推荐系统实现:从"猜你喜欢"到"懂你所想"的进化之旅关键词:知识图谱、智能推荐系统、实体关系、冷启动、可解释性、图神经网络、路径排序算法摘要:你是否好奇过,为什么电商平台总能精准推荐你想买的商品?为什么视频软件总能猜到你喜欢的剧情?传统推荐系统依赖用户行为数据,但面对新用户/新商品时会"抓瞎",且无法解释"为什么推荐这个"。本文将带你走进"基于知识图谱的智能推荐系统",用超市导购
- 探讨推荐系统中的上下文关联性的建模和建模方法——从信息处理的角度
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介在很多推荐系统中,如电影推荐、购物推荐等,根据用户的行为记录、设备信息、上下文环境等进行推荐是很重要的。在复杂多样的推荐场景下,如何同时考虑用户对不同时间段的兴趣以及上下文环境之间的关联性?如何捕获到用户当前的多维信息,而不仅仅局限于单一的主题或品牌?此次论文通过结合时间因素、图神经网络(GraphNeuralNetwork)及上下文关联性,提出一种基于上下文环
- 十大机器学习算法:理论与实战
Android洋芋
人工智能机器学习算法深度学习实战Kubernetes部署AI模型优化图神经网络决策树分析
简介机器学习技术持续演进,算法应用场景不断扩展。在众多算法中,有十种算法因其广泛的适用性和强大的表现力被公认为机器学习领域的核心力量。本文将从零开始,系统讲解这些算法的数学原理、应用场景和企业级开发实战,帮助初学者和工程师快速掌握这些算法,并能够将其应用于实际项目中。关键词:机器学习算法、集成学习、图神经网络、逻辑回归、决策树、支持向量机、KNN、k-means、PCA、强化学习一、集成学习算法(
- 基于连接感知的实时困倦分类图神经网络
是Dream呀
计算机视觉神经网络分类神经网络数据挖掘
疲劳驾驶是导致交通事故的主要原因之一。脑电图(EEG)是一种直接从大脑活动中检测睡意的方法,已广泛用于实时检测驾驶员的睡意。最近的研究表明,使用基于脑电图数据构建的大脑连接图来预测困倦状态的巨大潜力。然而,传统的脑连接网络与下游预测任务无关。本文提出了一种使用自注意机制的连接感知图神经网络(CAGNN),该网络可以通过端到端训练生成与任务相关的连接网络。研究方法研究方法基于实时监测驾驶员的脑电活动
- 【人工智能】图神经网络(GNN)的推理方法
meisongqing
人工智能神经网络
图神经网络(GNN)的推理方法是指利用训练好的模型对图结构数据(如节点、边或整个图)进行预测或决策的过程。其核心在于如何通过图的拓扑结构和节点/边特征,传播和聚合信息以实现目标任务的推理。以下是GNN的主要推理方法分类及其关键技术:1.按推理任务分类(1)节点级推理(Node-LevelInference)任务:预测单个节点的属性(如节点分类、回归)。方法:消息传递(MessagePassing)
- 图神经网络实战(3)——基于DeepWalk创建节点表示
盼小辉丶
图神经网络从入门到项目实战神经网络人工智能深度学习
图神经网络实战(3)——基于DeepWalk创建节点表示0.前言1.Word2Vec1.1CBOW与skip-gram1.2构建skip-gram模型1.3skip-gram模型1.4实现Word2Vec模型2.DeepWalk和随机行走3.实现DeepWalk小结系列链接0.前言DeepWalk是机器学习(machinelearning,ML)技术在图数据中的成功应用之一,其引入了嵌入等重要概念
- Dijkstra算法对比图神经网络(GNN)
爱吃青菜的大力水手
算法神经网络人工智能自动化调度算法机器学习
什么是AI模型?AI模型(人工智能模型)是一类模仿人类智能行为的数学模型或算法。它们通过从大量数据中学习,识别模式、做出预测或决策。常见的AI模型包括机器学习模型(如决策树、神经网络、支持向量机)和深度学习模型(如卷积神经网络CNN、循环神经网络RNN)。简单来说,AI模型就像一个“智能大脑”,通过训练数据来掌握某种技能,比如分类、预测或规划。AI模型如何使用到机器人调度算法中?机器人调度是指规划
- 从零到前沿:2025年人工智能系统性学习路径与最新技术融合指南
小李独爱秋
人工智能人工智能学习
一、构建人工智能认知框架(一)基础学科筑基数学核心能力线性代数:掌握矩阵运算(张量分解在推荐系统的应用)与特征值分析(PCA降维原理)概率统计:贝叶斯网络在医疗诊断中的应用,蒙特卡洛方法在强化学习的采样策略优化理论:2025年主流的元学习(Meta-Learning)框架中的二阶优化算法发展计算机科学基础数据结构:图神经网络(GNN)中的邻接矩阵存储优化操作系统:分布式训练中的GPU资源调度策略(
- 论文阅读-Quantum Annealing and Graph Neural Networks for Solving TSP with QUBO
酒饮微醉-
论文阅读
Q:这篇论文试图解决什么问题?A:这篇论文探讨了如何应用量子退火(QuantumAnnealing,QA)算法和图神经网络(GraphNeuralNetworks,GNNs)解决旅行商问题(TravellingSalesmanProblem,TSP)。TSP是一个经典的组合优化问题,它要求在给定的加权图中找到一条经过所有顶点恰好一次并返回起始点的最短路径。这个问题在实际应用中非常广泛,如物流、电子
- 基于图神经网络的甘草-甘遂-代谢酶三元互作网络建模与解析
百态老人
神经网络人工智能深度学习
一、问题定义与技术挑战在中药"十八反"配伍禁忌研究中,"甘草-甘遂"组合的毒性机制涉及多酶协同代谢效应与非线性网络互作。传统方法面临以下挑战:多尺度互作复杂性:甘草酸、甘遂萜酯等活性成分通过CYP2D6、CYP3A4等代谢酶网络产生协同/拮抗效应动态剂量依赖:毒性效应随配伍比例(如1:4至4:1)呈现非线性变化(图1)代谢异质性:患者基因型(如CYP2D6*10突变)显著影响毒性阈值图神经网络(G
- 图神经网络实战(12)——图同构网络(Graph Isomorphism Network, GIN)
盼小辉丶
图神经网络从入门到项目实战GNN图神经网络深度学习
图神经网络实战(12)——图同构网络0.前言1.图同构网络原理2.构建GIN模型执行图分类2.1图分类任务2.2PROTEINS数据集分析2.3构建GIN实现图分类2.4GCN与GIN性能差异分析3.提升模型性能小结系列链接0.前言Weisfeiler-Leman(WL)测试提供了一个理解图神经网络(GraphNeuralNetworks,GNN)表达能力的框架,利用该框架我们比较了不同的GNN层
- 直播带货AI电商系统超级进化:从实时推荐到虚拟主播的全栈实现(附完整代码)
夏末之花
人工智能
引言:直播电商3.0时代2023年直播电商市场规模突破4.9万亿,传统直播间面临三大痛点:用户停留时长B{AI网关}B-->C[实时推荐引擎]B-->D[虚拟主播系统]B-->E[智能场控系统]C-->F[图神经网络]D-->G[NeRF渲染]E-->H[强化学习]二、核心技术实现1.实时推荐系统(核心代码)#基于时间衰减的图神经网络推荐classTemporalGNN(nn.Module):de
- Geometric Vector Perceptron (GVP) 开源项目教程
梅昆焕Talia
GeometricVectorPerceptron(GVP)开源项目教程gvp项目地址:https://gitcode.com/gh_mirrors/gvp/gvp1.项目介绍1.1项目概述GeometricVectorPerceptron(GVP)是一个用于从生物分子结构中学习的旋转等变图神经网络(GNN)。该项目由斯坦福大学的Dror实验室开发,旨在通过几何向量感知器来处理生物分子结构数据,特
- 【GNN4Medical】GNN在医疗领域发展和应用
静静喜欢大白
医疗影像医学影像GNN人工智能癌症
目录1、引入2、方法综述2021SensorsGraph-BasedDeepLearningforMedicalDiagnosisandAnalysis:Past,PresentandFuture图神经网络在智能诊断与预测中应用的指南和测试基准2022MechanicalSystemsandSignalProcessingTheemerginggraphneuralnetworksforintel
- 图神经网络全解析:从基础概念到前沿应用
程序员小嬛
人工智能神经网络神经网络人工智能深度学习
近年来,在从社交网络到分子生物学等众多领域中,数据以图形式表示的情况愈发常见。图神经网络(GraphNeuralNetwork,GNN)是专门针对图结构数据研发的,若想充分释放图表示的潜能,深入探究图神经网络就成为关键。在本部分内容里,我们将详细剖析图神经网络的基础概念,并弄清楚它们为何能成为现代数据分析和机器学习领域的关键工具。下面,我们将围绕这些要点,全面认识GNN。首先,我们会剖析图作为数据
- 基于图神经网络(GNN)的机器人路径规划与环境理解
学习ing1
神经网络机器人人工智能
1.图神经网络(GNN)基础1.1GNN定义与结构图神经网络(GNN)是一种用于处理图结构数据的深度学习模型。在机器人路径规划与环境理解中,GNN能够有效处理环境中的拓扑结构信息。GNN的基本结构由节点(如机器人、障碍物、目标点等)和边(表示节点之间的关系)组成。每个节点都有自己的特征向量,边则表示节点之间的连接关系。例如,在一个室内环境中,机器人可以作为中心节点,周围的墙壁、家具等作为其他节点,
- 大模型驱动的人造板胶水仿真实验:从分子模拟到工艺优化
davysiao
AI应用随记人工智能机器学习算法
一、引言人造板胶水的性能直接影响板材的强度、耐水性和环保性。传统实验方法需反复试错,成本高且周期长。本文提出一种基于大模型的仿真实验框架,结合分子动力学模拟、图神经网络(GNN)和化学大语言模型(如ChemGPT),实现胶水配方设计、反应过程模拟和性能预测的全流程自动化。以PMDI(多亚甲基多苯基异氰酸酯)胶水为例,展示如何通过大模型加速研发进程。二、技术框架与核心模块1.分子动力学模拟(MD)工
- 2024 信息安全专业毕业设计(论文)选题题目推荐合集 选题指导
面试题开源
2024年程序员学习课程设计
基于机器学习的网络入侵检测与防御系统基于对抗性机器学习的网络入侵检测系统支持零知识证明的交易数据隐私保护方案基于图神经网络的门级硬件木马检测系统基于隐私风险评估的脱敏算法自适应系统基于区块链的电商诚信问答关键技术研究基于文本的网络安全事件检测系统与探索基于区块链的医疗数据分类加密共享系统用于缝纫设备远程维护的系统及加密系统基于联邦学习的分布式虚假新闻检测系统基于人脸识别技术的实验室身份验证系统基于
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的