灰度共生矩阵及相关特征值的计算——opencv

#include
#include
#include
#include
#include
using namespace std;
using namespace cv;

const int gray_level = 16;

void getglcm_horison(Mat& input, Mat& dst)//0度灰度共生矩阵
{
    Mat src=input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level=0;
    for (int j = 0; j < height; j++)//寻找像素灰度最大值
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;//像素灰度最大值加1即为该矩阵所拥有的灰度级数
    if (max_gray_level > 16)//若灰度级数大于16,则将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
    {
        for (int i = 0; i < height; i++)
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height; i++)
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width - 1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata[j + 1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else//若灰度级数小于16,则生成相应的灰度共生矩阵
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height; i++)
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width - 1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata[j + 1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}


void getglcm_vertical(Mat& input, Mat& dst)//90度灰度共生矩阵
{
    Mat src = input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level = 0;
    for (int j = 0; j < height; j++)
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;
    if (max_gray_level > 16)
    {
        for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height-1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i+1);
            for (int j = 0; j < width ; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height-1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 0; j < width; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}


void getglcm_45(Mat& input, Mat& dst)//45度灰度共生矩阵
{
    Mat src = input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level = 0;
    for (int j = 0; j < height; j++)
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;
    if (max_gray_level > 16)
    {
        for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 0; j < width-1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j+1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 0; j < width-1; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j+1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}


void getglcm_135(Mat& input, Mat& dst)//135度灰度共生矩阵
{
    Mat src = input;
    CV_Assert(1 == src.channels());
    src.convertTo(src, CV_32S);
    int height = src.rows;
    int width = src.cols;
    int max_gray_level = 0;
    for (int j = 0; j < height; j++)
    {
        int* srcdata = src.ptr<int>(j);
        for (int i = 0; i < width; i++)
        {
            if (srcdata[i] > max_gray_level)
            {
                max_gray_level = srcdata[i];
            }
        }
    }
    max_gray_level++;
    if (max_gray_level > 16)
    {
        for (int i = 0; i < height; i++)//将图像的灰度级缩小至16级,减小灰度共生矩阵的大小。
        {
            int*srcdata = src.ptr<int>(i);
            for (int j = 0; j < width; j++)
            {
                srcdata[j] = (int)srcdata[j] / gray_level;
            }
        }

        dst.create(gray_level, gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 1; j < width; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j-1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
    else
    {
        dst.create(max_gray_level, max_gray_level, CV_32SC1);
        dst = Scalar::all(0);
        for (int i = 0; i < height - 1; i++)
        {
            int*srcdata = src.ptr<int>(i);
            int*srcdata1 = src.ptr<int>(i + 1);
            for (int j = 1; j < width; j++)
            {
                int rows = srcdata[j];
                int cols = srcdata1[j-1];
                dst.ptr<int>(rows)[cols]++;
            }
        }
    }
}

void feature_computer(Mat&src, double& Asm, double& Eng, double& Con, double& Idm)//计算特征值
{
    int height = src.rows;
    int width = src.cols;
    int total = 0;
    for (int i = 0; i < height; i++)
    {
        int*srcdata = src.ptr<int>(i);
        for (int j = 0; j < width; j++)
        {
            total += srcdata[j];//求图像所有像素的灰度值的和
        }
    }

    Mat copy;
    copy.create(height, width, CV_64FC1);
    for (int i = 0; i < height; i++)
    {
        int*srcdata = src.ptr<int>(i);
        double*copydata = copy.ptr<double>(i);
        for (int j = 0; j < width; j++)
        {
            copydata[j]=(double)srcdata[j]/(double)total;//图像每一个像素的的值除以像素总和
        }
    }


    for (int i = 0; i < height; i++)
    {
        double*srcdata = copy.ptr<double>(i);
        for (int j = 0; j < width; j++)
        {
            Asm += srcdata[j] * srcdata[j];//能量
            if (srcdata[j]>0)
                Eng -= srcdata[j] * log(srcdata[j]);//熵             
            Con += (double)(i - j)*(double)(i - j)*srcdata[j];//对比度
            Idm += srcdata[j] / (1 + (double)(i - j)*(double)(i - j));//逆差矩
        }
    }
}

int main()
{
    Mat dst_horison, dst_vertical, dst_45, dst_135;

    Mat src = imread("C:\\Users\\aoe\\Desktop\\Visual C+\\Visual C+\\chapter08\\pic\\healthy\\201.bmp");
    if (src.empty())
    {
        return -1;
    }
    Mat src_gray;
    //src.create(src.size(), CV_8UC1);
    //src_gray = Scalar::all(0);
    cvtColor(src, src_gray, COLOR_BGR2GRAY);

    //src =( Mat_(6, 6) << 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2, 2, 3, 0, 1, 2, 3, 3, 0, 1, 2, 3, 0, 0, 1, 2, 3, 0, 1, 1, 2, 3, 0, 1, 2 );
    //src = (Mat_(4, 4) << 1, 17, 0, 3,3,2,20,5,26,50,1,2,81,9,25,1);
    getglcm_horison(src_gray, dst_horison);
    getglcm_vertical(src_gray, dst_vertical);
    getglcm_45(src_gray, dst_45);
    getglcm_135(src_gray, dst_135);

    double eng_horison=0, con_horison=0, idm_horison=0, asm_horison=0;
    feature_computer(dst_horison, asm_horison, eng_horison, con_horison, idm_horison);

    cout << "asm_horison:" << asm_horison << endl;
    cout << "eng_horison:" << eng_horison << endl;
    cout << "con_horison:" << con_horison << endl;
    cout << "idm_horison:" << idm_horison << endl;


/*  for (int i = 0; i < dst_horison.rows; i++)
    {
        int *data = dst_horison.ptr(i);
        for (int j = 0; j < dst_horison.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }
    cout << endl;

    for (int i = 0; i < dst_vertical.rows; i++)
    {
        int *data = dst_vertical.ptr(i);
        for (int j = 0; j < dst_vertical.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }
    cout << endl;

    for (int i = 0; i < dst_45.rows; i++)
    {
        int *data = dst_45.ptr(i);
        for (int j = 0; j < dst_45.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }

    cout << endl;

    for (int i = 0; i < dst_135.rows; i++)
    {
        int *data = dst_135.ptr(i);
        for (int j = 0; j < dst_135.cols; j++)
        {
            cout << data[j] << " ";
        }
        cout << endl;
    }*/
    system("pause");
    return 0;
}

参考:
灰度共生矩阵的定义与理解:http://www.cnblogs.com/xiangshancuizhu/archive/2011/07/24/2115266.html

opencv实现:
http://blog.csdn.net/cxf7394373/article/details/6988229
http://download.csdn.net/download/sxnzxz/3419181

你可能感兴趣的:(opencv)