AAC是Android Architecture Components的缩写,翻译过来就是Android架构组件的意思,是Google IO 2017大会期间发布的一组架构组件,它可以用来帮助开发搭建更加简单便捷的APP架构。AAC里面涉及到了LiveData,ViewModel,其中LiveData的工作需要依赖于Lifecycle,所以本篇文章将介绍Lifecycle的工作原理,并从源码的角度去解析它。在进行源码解读前我们需要先知道Lifecycle的使用方法,下面先看一个简单的simple。
这里我们新建Activity继承androidx里面的AppCompatActivity,它已经实现了LifecycleOwner接口,我们可以通过它的getLifecycle
方法拿到这个lifecycle对象添加observer,如果是自己实现的Activity,那么可以在自定义的Activity中新建一个LifecycleRegistry
并在响应的生命周期中调用它的handleLifecycleEvent
方法监听生命周期的改变。
class LifecycleTestActivity : AppCompatActivity() {
val TAG = javaClass.simpleName
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_lifecycle_test)
lifecycle.addObserver(MyLifeCycleObserver())
}
}
MyLifeCycleObserver .java
class MyLifeCycleObserver : LifecycleObserver {
val TAG = javaClass.simpleName
@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
fun onCreate(){
Log.i(TAG, "onCreate-----");
}
@OnLifecycleEvent(Lifecycle.Event.ON_START)
fun onStart(){
Log.i(TAG, "onStart-----");
}
@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
fun onResume(){
Log.i(TAG, "onResume-----");
}
@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
fun onPause(){
Log.i(TAG, "onPause-----");
}
@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
fun onStop(){
Log.i(TAG, "onStop-----");
}
@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
fun onDestroy(){
Log.i(TAG, "onDestroy-----");
}
}
这样我们就可以监听到Activity的生命周期回调了。
Lifecycle是androidx或者support包中新加入的功能特性,用来管理Activity的生命周期。本文以androidx包为例,进行源码解析。
在androidx包我们根据AppCompatActivity的继承关系可以发现它是ComponentActivity.java
的子类,我们先看一下ComponentActivity.java
的类结构
public class ComponentActivity extends Activity
implements LifecycleOwner, KeyEventDispatcher.Component
发现其实现了LifecycleOwner
接口,我们看一下LifecycleOwner
接口的定义
public interface LifecycleOwner {
/**
* Returns the Lifecycle of the provider.
*
* @return The lifecycle of the provider.
*/
@NonNull
Lifecycle getLifecycle();
}
它定义了一个getLifecycle()
方法,我们看看在ComponentActivity
中这个接口方法的实现
@Override
public Lifecycle getLifecycle() {
return mLifecycleRegistry;
}
发现这个方法返回的是一个Lifecycle对象,Lifecycle是一个抽象类,里面定义了三个抽象方法,和Event,State两个枚举类,我们看一下它的源码(限于篇幅,已裁剪掉了大段注释)
public abstract class Lifecycle {
@MainThread
public abstract void addObserver(@NonNull LifecycleObserver observer);
@MainThread
public abstract void removeObserver(@NonNull LifecycleObserver observer);
@MainThread
@NonNull
public abstract State getCurrentState();
@SuppressWarnings("WeakerAccess")
public enum Event {
ON_CREATE,
ON_START,
ON_RESUME,
ON_PAUSE,
ON_STOP,
ON_DESTROY,
ON_ANY
}
/**
* Lifecycle states. You can consider the states as the nodes in a graph and
* {@link Event}s as the edges between these nodes.
*/
@SuppressWarnings("WeakerAccess")
public enum State {
DESTROYED,
INITIALIZED,
CREATED,
STARTED,
RESUMED;
public boolean isAtLeast(@NonNull State state) {
return compareTo(state) >= 0;
}
}
}
在getLifecycle
方法中,它返回的mLifecycleRegistry
是一个LifecycleRegistry
类的实例,我们看看它是怎么实现Lifecycle接口的,首先看看它的addObserver
方法的源码
@Override
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
在第二段代码中根据我们传入的observer创建了一个ObserverWithState
类对象,我们看看ObserverWithState
类对象
static class ObserverWithState {
State mState;
GenericLifecycleObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
mLifecycleObserver = Lifecycling.getCallback(observer);
mState = initialState;
}
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}
注意看它的构造方法,它将我们传入的observer转化为了GenericLifecycleObserver
类对象,而我们传入的对象仅是实现了一个空接口LifecycleObserver
的实例,那么它是怎么转化的呢,我们看看Lifecycling.getCallback(observer);
@NonNull
static GenericLifecycleObserver getCallback(Object object) {
// 如果是FullLifecycleObserver实例,那么创建一个FullLifecycleObserverAdapter对象
// FullLifecycleObserverAdapter实现了GenericLifecycleObserver接口
// ①.
if (object instanceof FullLifecycleObserver) {
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object);
}
// 如果是GenericLifecycleObserver对象,则不用转化了直接返回
// ②.
if (object instanceof GenericLifecycleObserver) {
return (GenericLifecycleObserver) object;
}
final Class<?> klass = object.getClass();
// 获取需要转化是通过反射还是生成类型
// ③.
int type = getObserverConstructorType(klass);
if (type == GENERATED_CALLBACK) {
// 生成类型
List<Constructor<? extends GeneratedAdapter>> constructors =
sClassToAdapters.get(klass);
if (constructors.size() == 1) {
GeneratedAdapter generatedAdapter = createGeneratedAdapter(
constructors.get(0), object);
// ④.
return new SingleGeneratedAdapterObserver(generatedAdapter);
}
GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
for (int i = 0; i < constructors.size(); i++) {
adapters[i] = createGeneratedAdapter(constructors.get(i), object);
}
// ④.
return new CompositeGeneratedAdaptersObserver(adapters);
}
// ④.
return new ReflectiveGenericLifecycleObserver(object);
}
这个方法比较复杂,我们首先看下1处的FullLifecycleObserver
接口
interface FullLifecycleObserver extends LifecycleObserver {
void onCreate(LifecycleOwner owner);
void onStart(LifecycleOwner owner);
void onResume(LifecycleOwner owner);
void onPause(LifecycleOwner owner);
void onStop(LifecycleOwner owner);
void onDestroy(LifecycleOwner owner);
}
发现它定义了一组和Activity生命周期相对应的方法,我们在看看FullLifecycleObserverAdapter
class FullLifecycleObserverAdapter implements GenericLifecycleObserver {
private final FullLifecycleObserver mObserver;
FullLifecycleObserverAdapter(FullLifecycleObserver observer) {
mObserver = observer;
}
@Override
public void onStateChanged(LifecycleOwner source, Lifecycle.Event event) {
switch (event) {
case ON_CREATE:
mObserver.onCreate(source);
break;
case ON_START:
mObserver.onStart(source);
break;
case ON_RESUME:
mObserver.onResume(source);
break;
case ON_PAUSE:
mObserver.onPause(source);
break;
case ON_STOP:
mObserver.onStop(source);
break;
case ON_DESTROY:
mObserver.onDestroy(source);
break;
case ON_ANY:
throw new IllegalArgumentException("ON_ANY must not been send by anybody");
}
}
可以发现它应用了适配器模式,实现了GenericLifecycleObserver
接口,在接口方法onStateChanged
实现中回调了相应的方法,将。这FullLifecycleObserver
接口适配成了GenericLifecycleObserver
。这里我们先记住GenericLifecycleObserver
接口,它比较重要,后面我们会知道GenericLifecycleObserver
接口的onStateChanged
触发点。通过对FullLifecycleObserver
和FullLifecycleObserverAdapter
分析我们得出,如果我们添加的observer是FullLifecycleObserver
的实例,那么它最终也会转换为GenericLifecycleObserver
,可惜FullLifecycleObserver
的访问权限是默认的不是public的。
我们再看上面的②处,如果我们传入的observer是GenericLifecycleObserver
实例,那么它直接返回。再看上面的③处的getObserverConstructorType
方法
private static int getObserverConstructorType(Class<?> klass) {
if (sCallbackCache.containsKey(klass)) {
return sCallbackCache.get(klass);
}
int type = resolveObserverCallbackType(klass);
sCallbackCache.put(klass, type);
return type;
}
它做了缓存,然后调用了resolveObserverCallbackType
方法
private static int resolveObserverCallbackType(Class<?> klass) {
// anonymous class bug:35073837
// 判断是不是匿名内部类,为null代表是匿名内部类
if (klass.getCanonicalName() == null) {
return REFLECTIVE_CALLBACK;
}
// 反射获取构造器,内部根据传入的class和约定的_LifecycleAdapter命名后缀反射加载相应注解生成器生成的构造器
Constructor<? extends GeneratedAdapter> constructor = generatedConstructor(klass);
if (constructor != null) {
sClassToAdapters.put(klass, Collections
.<? extends GeneratedAdapter>>singletonList(constructor));
// 有相应的构造器,返回生成类型
return GENERATED_CALLBACK;
}
// 反射获取observer类的方法,判断它是否包含OnLifecycleEvent.class注解,如果包含,则返回反射类型
boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass);
if (hasLifecycleMethods) {
return REFLECTIVE_CALLBACK;
}
Class<?> superclass = klass.getSuperclass();
List<Constructor<? extends GeneratedAdapter>> adapterConstructors = null;
// 判断observer的superclass是否是LifecycleObserver的子类
if (isLifecycleParent(superclass)) {
// 判断父类型是否符合反射类型
if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
adapterConstructors = new ArrayList<>(sClassToAdapters.get(superclass));
}
// 判断observer实现的接口是否符合反射类型
for (Class<?> intrface : klass.getInterfaces()) {
if (!isLifecycleParent(intrface)) {
continue;
}
if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
// 生成类的构造器
if (adapterConstructors == null) {
adapterConstructors = new ArrayList<>();
}
adapterConstructors.addAll(sClassToAdapters.get(intrface));
}
// 判断是否反射解析到生成类的构造器
if (adapterConstructors != null) {
sClassToAdapters.put(klass, adapterConstructors);
return GENERATED_CALLBACK;
}
return REFLECTIVE_CALLBACK;
}
通过上面的注释我们发现getObserverConstructorType
方法是生成observer转化类是通过反射还是注解生成的类。回到调用getObserverConstructorType
的getCallback
方法
final Class<?> klass = object.getClass();
int type = getObserverConstructorType(klass);
if (type == GENERATED_CALLBACK) {
List<Constructor<? extends GeneratedAdapter>> constructors =
sClassToAdapters.get(klass);
if (constructors.size() == 1) {
GeneratedAdapter generatedAdapter = createGeneratedAdapter(
constructors.get(0), object);
return new SingleGeneratedAdapterObserver(generatedAdapter);
}
GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
for (int i = 0; i < constructors.size(); i++) {
adapters[i] = createGeneratedAdapter(constructors.get(i), object);
}
return new CompositeGeneratedAdaptersObserver(adapters);
}
return new ReflectiveGenericLifecycleObserver(object);
通过getObserverConstructorType
方法得到通过反射还是生成得到代理的observer的类,如果是生成类型则会更加构造器的数量生成SingleGeneratedAdapterObserver
或是CompositeGeneratedAdaptersObserver
,如果是反射方式则会生成ReflectiveGenericLifecycleObserver
,我们分别看下这三个类的源码
SingleGeneratedAdapterObserver.java
public class SingleGeneratedAdapterObserver implements GenericLifecycleObserver {
private final GeneratedAdapter mGeneratedAdapter;
SingleGeneratedAdapterObserver(GeneratedAdapter generatedAdapter) {
mGeneratedAdapter = generatedAdapter;
}
@Override
public void onStateChanged(LifecycleOwner source, Lifecycle.Event event) {
mGeneratedAdapter.callMethods(source, event, false, null);
mGeneratedAdapter.callMethods(source, event, true, null);
}
}
CompositeGeneratedAdaptersObserver.java
@RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
public class CompositeGeneratedAdaptersObserver implements GenericLifecycleObserver {
private final GeneratedAdapter[] mGeneratedAdapters;
CompositeGeneratedAdaptersObserver(GeneratedAdapter[] generatedAdapters) {
mGeneratedAdapters = generatedAdapters;
}
@Override
public void onStateChanged(LifecycleOwner source, Lifecycle.Event event) {
MethodCallsLogger logger = new MethodCallsLogger();
for (GeneratedAdapter mGenerated: mGeneratedAdapters) {
mGenerated.callMethods(source, event, false, logger);
}
for (GeneratedAdapter mGenerated: mGeneratedAdapters) {
mGenerated.callMethods(source, event, true, logger);
}
}
}
ReflectiveGenericLifecycleObserver .java
class ReflectiveGenericLifecycleObserver implements GenericLifecycleObserver {
private final Object mWrapped;
private final CallbackInfo mInfo;
ReflectiveGenericLifecycleObserver(Object wrapped) {
mWrapped = wrapped;
mInfo = ClassesInfoCache.sInstance.getInfo(mWrapped.getClass());
}
@Override
public void onStateChanged(LifecycleOwner source, Event event) {
mInfo.invokeCallbacks(source, event, mWrapped);
}
}
可以看到它们三种observer都实现了GenericLifecycleObserver
接口,并在onStateChanged
方法中分发响应了响应的生命周期回调事件,所以最终我们锁定到GenericLifecycleObserver.java
,回到LifecycleRegistry的addObserver
方法
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
我们看到这里调用了statefulObserver的dispatchEvent
方法,包括下面的sync
方法中也调用了dispatchEvent
方法,我们看看statefulObserver
的dispatchEvent
的方法实现
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
这里调用了通过生成器生成的GenericLifecycleObserver
还是反射得到的GenericLifecycleObserver
的onStateChanged
的方法,而通过上面的分析我们知道GenericLifecycleObserver
的onStateChanged
里面分发的observer的事件方法,这个是在addObserver的走的逻辑。那么我们的Activity在其他生命周期回调的时候是怎么通知我们的observer事件改变的呢。
这时我们回到ComponentActivity
,发现其在onCreate()
方法中创建了一个空的fragment来监听生命周期的方法
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ReportFragment.injectIfNeededIn(this);
}
我们看看injectIfNeededIn
方法
public static void injectIfNeededIn(Activity activity) {
// ProcessLifecycleOwner should always correctly work and some activities may not extend
// FragmentActivity from support lib, so we use framework fragments for activities
android.app.FragmentManager manager = activity.getFragmentManager();
if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
// Hopefully, we are the first to make a transaction.
manager.executePendingTransactions();
}
}
发现在方法中创建了一个ReportFragment并添加到了我们的Activity,我们看下ReportFragment.java
的源码的几个生命周期相关的方法
@Override
public void onStart() {
super.onStart();
dispatchStart(mProcessListener);
dispatch(Lifecycle.Event.ON_START);
}
@Override
public void onResume() {
super.onResume();
dispatchResume(mProcessListener);
dispatch(Lifecycle.Event.ON_RESUME);
}
@Override
public void onPause() {
super.onPause();
dispatch(Lifecycle.Event.ON_PAUSE);
}
发现其在相应的生命周期中调用了dispatch
方法
private void dispatch(Lifecycle.Event event) {
Activity activity = getActivity();
if (activity instanceof LifecycleRegistryOwner) {
((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
return;
}
if (activity instanceof LifecycleOwner) {
Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
if (lifecycle instanceof LifecycleRegistry) {
((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
}
}
}
最终又调用了lifecycle实现类LifecycleRegistry
的handleLifecycleEvent
方法
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}
然后继续看moveToState
方法
private void moveToState(State next) {
if (mState == next) {
return;
}
mState = next;
if (mHandlingEvent || mAddingObserverCounter != 0) {
mNewEventOccurred = true;
// we will figure out what to do on upper level.
return;
}
mHandlingEvent = true;
sync();
mHandlingEvent = false;
}
发现其调用了sync
方法
private void sync() {
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
Log.w(LOG_TAG, "LifecycleOwner is garbage collected, you shouldn't try dispatch "
+ "new events from it.");
return;
}
while (!isSynced()) {
mNewEventOccurred = false;
// no need to check eldest for nullability, because isSynced does it for us.
if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
backwardPass(lifecycleOwner);
}
Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
if (!mNewEventOccurred && newest != null
&& mState.compareTo(newest.getValue().mState) > 0) {
forwardPass(lifecycleOwner);
}
}
mNewEventOccurred = false;
}
在sync
方法里面又调用了backwardPass
和forwardPass
方法,在这两个方法中最终都回调了ObserverWithState
的dispatchEvent
方法,在这个方法中调用了onStateChanged
方法触发了我们调用addObserver
添加的observer相应的生命周期方法。
到这里Lifecycle的工作原理就已经解析完了,有兴趣的读者可以去查阅一下androidx或者support包中的Fragment是Lifecycle源码实现,下面Lifecycle工作原理的类图和时序图来结束本篇文章。