解释器模式常用于对简单语言的编译或分析实例中,为了掌握好它的结构与实现,必须先了解编译原理中的“文法、句子、语法树”等相关概念。
1) 文法
文法是用于描述语言的语法结构的形式规则。没有规矩不成方圆,例如,有些人认为完美爱情的准则是“相互吸引、感情专一、任何一方都没有恋爱经历”,虽然最后一条准则较苛刻,但任何事情都要有规则,语言也一样,不管它是机器语言还是自然语言,都有它自己的文法规则。例如,中文中的“句子”的文法如下:
〈句子〉::=〈主语〉〈谓语〉〈宾语〉
〈主语〉::=〈代词〉|〈名词〉
〈谓语〉::=〈动词〉
〈宾语〉::=〈代词〉|〈名词〉
〈代词〉你|我|他
〈名词〉大学生|英语
〈动词〉::=是|学习
注:这里的符号“::=”表示“定义为”的意思,用“〈”和“〉”括住的是非终结符,没有括住的是终结符。
2) 句子
句子是语言的基本单位,是语言集中的一个元素,它由终结符构成,能由“文法”推导出。例如,上述文法可以推出“我是大学生”,所以它是句子。
3) 语法树
语法树是句子结构的一种树型表示,它代表了句子的推导结果,它有利于理解句子语法结构的层次。下图所示是“我是大学生”的语法树。
有了以上基础知识,现在来介绍解释器模式的结构就简单了。解释器模式的结构与组合模式相似,不过其包含的组成元素比组合模式多,而且组合模式是对象结构型模式,而解释器模式是类行为型模式。
给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的实例。这种模式实现了文法表达式处理的接口,该接口解释一个特定的上下文。
文法”指语言的语法规则,而“句子”是语言集中的元素。
优点
缺点
抽象表达式(Abstract Expression)角色
:定义解释器的接口,约定解释器的解释操作,主要包含解释方法 interpret()。终结符表达式(Terminal Expression)角色
:是抽象表达式的子类,用来实现文法中与终结符相关的操作,文法中的每一个终结符都有一个具体终结表达式与之相对应。非终结符表达式(Nonterminal Expression)角色
:也是抽象表达式的子类,用来实现文法中与非终结符相关的操作,文法中的每条规则都对应于一个非终结符表达式。环境(Context)角色
:通常包含各个解释器需要的数据或是公共的功能,一般用来传递被所有解释器共享的数据,后面的解释器可以从这里获取这些值。客户端(Client)
:主要任务是将需要分析的句子或表达式转换成使用解释器对象描述的抽象语法树,然后调用解释器的解释方法,当然也可以通过环境角色间接访问解释器的解释方法。/**
* @author yeming.gao
* @Description: 解释器模式实现
* @date 2020/5/21 16:31
*/
public class Interpreter {
}
/**
* 抽象表达式类
*/
interface AbstractExpression {
public Object interpret(String info); //解释方法
}
/**
* 终结符表达式类
*/
class TerminalExpression_Interpreter implements AbstractExpression {
@Override
public Object interpret(String info) {
//对终结符表达式的处理
return null;
}
}
/**
* 非终结符表达式类
*/
class NonterminalExpression_Interpreter implements AbstractExpression {
private AbstractExpression exp1;
private AbstractExpression exp2;
@Override
public Object interpret(String info) {
//非对终结符表达式的处理
return null;
}
}
/**
* 环境类
*/
class Context_Interpreter {
private AbstractExpression exp;
public Context_Interpreter() {
//数据初始化
}
public void operation(String info) {
//调用相关表达式类的解释方法
}
}
【例】用解释器模式设计一个“韶粵通”公交车卡的读卡器程序。
说明:假如“韶粵通”公交车读卡器可以判断乘客的身份,如果是“韶关”或者“广州”的“老人” “妇女”“儿童”就可以免费乘车,其他人员乘车一次扣 2 元。
分析:本实例用“解释器模式”设计比较适合,首先设计其文法规则如下。
::= 的
::= 韶关|广州
::= 老人|妇女|儿童
然后,根据文法规则按以下步骤设计公交车卡的读卡器程序的类图。
/**
* @author yeming.gao
* @Description: 解释器模式示例
* 文法规则
* ::= 的
* ::= 韶关|广州
* ::= 老人|妇女|儿童
* @date 2020/5/21 16:42
*/
public class InterpreterPatternDemo {
public static void main(String[] args) {
Context bus = new Context();
bus.freeRide("韶关的老人");
bus.freeRide("韶关的年轻人");
bus.freeRide("广州的妇女");
bus.freeRide("广州的儿童");
bus.freeRide("山东的儿童");
}
}
/**
* 抽象表达式类
*/
interface Expression {
public boolean interpret(String info);
}
/**
* 终结符表达式类
*/
class TerminalExpression implements Expression {
private Set set = new HashSet<>();
public TerminalExpression(String[] data) {
for (int i = 0; i < data.length; i++) {
set.add(data[i]);
}
}
@Override
public boolean interpret(String info) {
if (set.contains(info)) {
return true;
}
return false;
}
}
/**
* 非终结符表达式类
*/
class AndExpression implements Expression {
private Expression city = null;
private Expression person = null;
public AndExpression(Expression city, Expression person) {
this.city = city;
this.person = person;
}
@Override
public boolean interpret(String info) {
String s[] = info.split("的");
return city.interpret(s[0]) && person.interpret(s[1]);
}
}
/**
* 环境类
*/
class Context {
private String[] citys = {"韶关", "广州"};
private String[] persons = {"老人", "妇女", "儿童"};
private Expression cityPerson;
public Context() {
Expression city = new TerminalExpression(citys);
Expression person = new TerminalExpression(persons);
cityPerson = new AndExpression(city, person);
}
public void freeRide(String info) {
boolean ok = cityPerson.interpret(info);
if (ok) {
System.out.println("您是" + info + ",您本次乘车免费!");
} else {
System.out.println(info + ",您不是免费人员,本次乘车扣费2元!");
}
}
}
程序运行结果如下:
您是韶关的老人,您本次乘车免费!
韶关的年轻人,您不是免费人员,本次乘车扣费2元!
您是广州的妇女,您本次乘车免费!
您是广州的儿童,您本次乘车免费!
山东的儿童,您不是免费人员,本次乘车扣费2元!
在项目开发中,如果要对数据表达式进行分析与计算,无须再用解释器模式进行设计了,Java 提供了以下强大的数学公式解析器:Expression4J、MESP(Math Expression String Parser) 和 Jep 等,它们可以解释一些复杂的文法,功能强大,使用简单。
现在以 Jep 为例来介绍该工具包的使用方法。Jep 是 Java expression parser 的简称,即 Java 表达式分析器,它是一个用来转换和计算数学表达式的 Java 库。通过这个程序库,用户可以以字符串的形式输入一个任意的公式,然后快速地计算出其结果。而且 Jep 支持用户自定义变量、常量和函数,它包括许多常用的数学函数和常量。
示例
public class JepDemo {
public static void main(String[] args) throws JepException
{
Jep jep=new Jep();
//定义要计算的数据表达式
String 存款利息="本金*利率*时间";
//给相关变量赋值
jep.addVariable("本金",10000);
jep.addVariable("利率",0.038);
jep.addVariable("时间",2);
jep.parse(存款利息); //解析表达式
Object accrual=jep.evaluate(); //计算
System.out.println("存款利息:"+accrual);
}
}
程序运行结果如下:
存款利息:760.0