Java并发编程艺术——ReentrantReadWriteLock(读写锁)

ReadWriteLock仅定义了获取读锁和写锁的两个方法,即readLock()方法和writeLock()方法,而其实现——ReentrantReadWriteLock,除了接口方法之外,还提供了一些便于外界监控其内部工作状态的方法,这些方法以及描述如表5-9所示。
Java并发编程艺术——ReentrantReadWriteLock(读写锁)_第1张图片

public class Cache {
static Map map = new HashMap();
static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
static Lock r = rwl.readLock();
static Lock w = rwl.writeLock();
// 获取一个key对应的value
public static final Object get(String key) {
r.lock();
try {
return map.get(key);
} finally {
r.unlock();
}
}/
/ 设置key对应的value,并返回旧的value
public static final Object put(String key, Object value) {
    w.lock();
try {
return map.put(key, value);
} finally {
    w.unlock();
}
}// 清空所有的内容
public static final void clear() {
    w.lock();
    try {
        map.clear();
    } finally {
        w.unlock();
    }
}
}

回想ReentrantLock中自定义同步器的实现,同步状态表示锁被一个线程重复获取的次数,而读写锁的自定义同步器需要在同步状态(一个整型变量)上维护多个读线程和一个写线程的状态,使得该状态的设计成为读写锁实现的关键。

如果在一个整型变量上维护多种状态,就一定需要“按位切割使用”这个变量,读写锁将变量切分成了两个部分,高16位表示读,低16位表示写。

Java并发编程艺术——ReentrantReadWriteLock(读写锁)_第2张图片

总结一下就是对一个32位的volatile修饰的int数据进行高低位拆分:高十六位为读锁统计位,低十六位为写锁统计位。所以讲一切状态为的更新都变为对这个数的位运算。

假设当前同步状态
值为S,写状态等于S&0x0000FFFF(将高16位全部抹去,得出的值就是当前的写状态的获取),读状态等于S>>>16(无符号补0右移16位)。当写状态增加1时,等于S+1,当读状态增加1时,等于S+(1<<16),也就是S+0x00010000,由此可推论:S不等于0时,当写状态S&0x0000FFFF)等于0时,则读状态(S>>>16)大于0,即读锁已被获取。

写锁的获取、释放

protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// 存在读锁或者当前获取线程不是已经获取写锁的线程
if (w == 0 || current != getExclusiveOwnerThread())
return false;

if (w + exclusiveCount(acquires) > MAX_COUNT)//当前的锁总数已经超过所能允许的最大值
throw new Error("Maximum lock count exceeded");
setState(c + acquires);
return true;
}i
f (writerShouldBlock() || !compareAndSetState(c, c + acquires)) {
return false;
}s
etExclusiveOwnerThread(current);
return true;
}

该方法除了重入条件(当前线程为获取了写锁的线程)之外,增加了一个读锁是否存在的判断。如果存在读锁,则写锁不能被获取,原因在于:读写锁要确保写锁的操作对读锁可见,如果允许读锁在已被获取的情况下对写锁的获取,那么正在运行的其他读线程就无法感知到当前写线程的操作。因此,只有等待其他读线程都释放了读锁,写锁才能被当前线程获取,而写锁一旦被获取,则其他读写线程的后续访问均被阻塞。

写锁的释放:写锁的释放与ReentrantLock的释放过程基本类似,每次释放均减少写状态,当写状态为0时表示写锁已被释放,从而等待的读写线程能够继续访问读写锁,同时前次写线程的修改对后续读写线程可见。

读锁的获取与释放:
读锁是一个支持重进入的共享锁,它能够被多个线程同时获取,在没有其他写线程访问(或者写状态为0)时,读锁总会被成功地获取,而所做的也只是(线程安全的)增加读状态。如果当前线程已经获取了读锁,则增加读状态。如果当前线程在获取读锁时,写锁已被其他线程获取,则进入等待状态。
读状态是所有线程获取读锁次数的总和,而每个线程各自获取读锁的次数只能选择保存在ThreadLocal中,由线程自身维护,这使获取读锁的实现变得复杂。

protected final int tryAcquireShared(int unused) {
for (;;) {
int c = getState();
int nextc = c + (1 << 16);
if (nextc < c)
throw new Error("Maximum lock count exceeded");
if (exclusiveCount(c) != 0 && owner != Thread.currentThread())
return -1;
if (compareAndSetState(c, nextc))
return 1;
}
}

在tryAcquireShared(int unused)方法中,如果其他线程已经获取了写锁,则当前线程获取读锁失败,进入等待状态。如果当前线程获取了写锁或者写锁未被获取,则当前线程(线程安全,依靠CAS保证)增加读状态,成功获取读锁。读锁的每次释放(线程安全的,可能有多个读线程同时释放读锁)均减少读状态,减少的值是(1<<16)。

锁降级:
锁降级指的是写锁降级成为读锁。如果当前线程拥有写锁,然后将其释放,最后再获取读锁,这种分段完成的过程不能称之为锁降级。锁降级是指把持住(当前拥有的)写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。

public void processData() {
readLock.lock();
if (!update) {
// 必须先释放读锁
readLock.unlock();
// 锁降级从写锁获取到开始
writeLock.lock();
try {
if (!update) {
// 准备数据的流程(略)
update = true;
}r
eadLock.lock();
} finally {
writeLock.unlock();
}/
/ 锁降级完成,写锁降级为读锁
}t
ry {// 使用数据的流程(略)
} finally {
readLock.unlock();
}
}

上述示例中,当数据发生变更后,update变量(布尔类型且volatile修饰)被设置为false,此时所有访问processData()方法的线程都能够感知到变化,但只有一个线程能够获取到写锁,其他线程会被阻塞在读锁和写锁的lock()方法上。当前线程获取写锁完成数据准备之后,再获取读锁,随后释放写锁,完成锁降级。
锁降级的必要性:主要是为了保证数据的可见性,如果当前线程不获取读锁而是直接释放写锁,假设此刻另一个线程(记作线程T)获取了写锁并修改了数据,那么当前线程无法感知线程T的数据更新。如果当前线程获取读锁,即遵循锁降级的步骤,则线程T将会被阻塞,直到当前线程使用数据并释放读锁之后,线程T才能获取写锁进行数据更新。
RentrantReadWriteLock不支持锁升级(把持读锁、获取写锁,最后释放读锁的过程)。目的也是保证数据可见性,如果读锁已被多个线程获取,其中任意线程成功获取了写锁并更新了数据,则其更新对其他获取到读锁的线程是不可见的。

你可能感兴趣的:(Java)