PyTorch Geometric(PyG) Normalization Layers(BatchNorm)源码详解

继承自pytorch的BatchNorm1d,基本没啥变化

from torch.nn import BatchNorm1d


class BatchNorm(BatchNorm1d):
    r"""Applies batch normalization over a batch of node features as described
    in the `"Batch Normalization: Accelerating Deep Network Training by
    Reducing Internal Covariate Shift" `_
    paper

    .. math::
        \mathbf{x}^{\prime}_i = \frac{\mathbf{x} -
        \textrm{E}[\mathbf{x}]}{\sqrt{\textrm{Var}[\mathbf{x}] + \epsilon}}
        \odot \gamma + \beta

    Args:
        in_channels (int): Size of each input sample.
        eps (float, optional): A value added to the denominator for numerical
            stability. (default: :obj:`1e-5`)
        momentum (float, optional): The value used for the running mean and
            running variance computation. (default: :obj:`0.1`)
        affine (bool, optional): If set to :obj:`True`, this module has
            learnable affine parameters :math:`\gamma` and :math:`\beta`.
            (default: :obj:`True`)
        track_running_stats (bool, optional): If set to :obj:`True`, this
            module tracks the running mean and variance, and when set to
            :obj:`False`, this module does not track such statistics and always
            uses batch statistics in both training and eval modes.
            (default: :obj:`True`)
    """
    def __init__(self, in_channels, eps=1e-5, momentum=0.1, affine=True,
                 track_running_stats=True):
        super(BatchNorm, self).__init__(in_channels, eps, momentum, affine,
                                        track_running_stats)

    def forward(self, x):
        """"""
        return super(BatchNorm, self).forward(x)


    def __repr__(self):
        return ('{}({}, eps={}, momentum={}, affine={}, '
                'track_running_stats={})').format(self.__class__.__name__,
                                                  self.num_features, self.eps,
                                                  self.momentum, self.affine,
                                                  self.track_running_stats)

你可能感兴趣的:(PyG)