蒙特卡罗算法与拉斯维加斯算法比较

1 蒙特卡罗算法简介
蒙特卡罗(Monte Carlo)算法并不是一种特定的算法,而是对一类随机算法的特性的概括。它的名字来源于赌城蒙特卡罗,象征概率。它的基本思想是通过大量随机样本,去了解一个系统,进而得到要计算的值。它非常强大灵活,又相当简单易懂,很容易实现。

2 蒙特卡罗算法与拉斯维加斯算法比较
随机算法分为两大类:蒙特卡罗算法和拉斯维加斯算法,都是以著名的赌城命名的,且都是通过随机采样尽可能找到最优解。

比较项目	蒙特卡罗算法	拉斯维加斯算法
规律	采样越多,越逼近最优解	采样越多,越有可能找到最优解
例子	从不透明的苹果筐中挑最大的苹果	从一串钥匙中试出能开锁的钥匙
策略	尽量找好的,但不保证是最好的	尽量找最好的,但不保证能找到(除非全枚举)
适用情景(依问题而定)	要求在有限采样内,必须给出一个解,但不要求是最优解	对采样要求没有限制,要求必须给出最优解
3 蒙特卡罗算法的简单python实现
下面就用蒙特卡罗随机取样的思想近似求解圆周率ππ 
正方形内部有一个内切的圆,通过简单计算可知内切圆和正方形的面积比为π/4π/4,因此通过在直角坐标系的第一象限随机取点,统计落在圆内的点,其与总取样点数的比例即为π/4π/4,将该比例乘以4即可得ππ。示意图和代码如下: 


#-*-coding:utf-8-*-
import random
def calcPi(n):
        count = 0
        for i in range(n):
                x = random.uniform(0,1.0) #在[0,1]区间均匀地随机取样
                y = random.uniform(0,1.0)
                if(x**2+y**2<=1):
                        count += 1
        return 4.0*count/n #注意4要写成浮点数的形式,否则结果只保留整数
print calcPi(30000) #取30000个样本点

一次计算结果为3.15226666667,误差不到0.5%,且取样点数越多,结果越接近。

参考: 
1.蒙特卡罗方法入门 
2.知乎:蒙特卡罗算法是什么
--------------------- 
作者:Blateyang 
来源:CSDN 
原文:https://blog.csdn.net/Blateyang/article/details/77624189 
版权声明:本文为博主原创文章,转载请附上博文链接!

 

你可能感兴趣的:(ML)