决策树(ID3)c++实现(未剪枝)

主要存在几个地方需要注意:
1.数据结构的选择

struct Node {//决策树节点    
    string attribute;//属性,下一个需要决策的属性值
    string arrived_value;//选择什么样的属性值,到达的该结点!    
    vector childs;//所有的孩子    
    Node() {
        attribute = blank;
        arrived_value = blank;
    }
};

2.属性的选择即信息增益和熵的计算
3.递归遍历生成树
下面是源代码,参考代码后进行了修改,并增加了测试。

#include "stdafx.h"
#include 
#include 
#include 
#include 
#include     
#include     
#include     
#include 
#include 

using namespace std;
#define MAXLEN 6//输入每行的数据个数    

//多叉树的实现     
//1 广义表    
//2 父指针表示法,适于经常找父结点的应用    
//3 子女链表示法,适于经常找子结点的应用    
//4 左长子,右兄弟表示法,实现比较麻烦    
//5 每个结点的所有孩子用vector保存    
//教训:数据结构的设计很重要,本算法采用5比较合适,同时    
//注意维护剩余样例和剩余属性信息,建树时横向遍历考循环属性的值,    
//纵向遍历靠递归调用    

vector <vector <string> > state;//实例集    

vector <vector <string> > state2;//实例集 

vector<vector<string>> testdata;

vector <string> item(MAXLEN);//对应一行实例集    

vector <string> attribute_row;//保存首行即属性行数据    
string end("end");//输入结束    
string yes("yes");
string no("no");
string blank("");
map<string, vector < string > > map_attribute_values;//存储属性对应的所有的值    
int tree_size = 0;

struct Node {//决策树节点    
    string attribute;//属性    
    string arrived_value;//到达的属性值    
    vector childs;//所有的孩子    
    Node() {
        attribute = blank;
        arrived_value = blank;
    }
};
Node * root;

//根据数据实例计算属性与值组成的map    
void ComputeMapFrom2DVector() {
    unsigned int i, j, k;
    bool exited = false;
    vector<string> values;
    for (i = 1; i < MAXLEN - 1; i++) {//按照列遍历    
        for (j = 1; j < state.size(); j++) {
            for (k = 0; k < values.size(); k++) {
                if (!values[k].compare(state[j][i])) exited = true;//value中是否存在。
            }
            if (!exited) {
                values.push_back(state[j][i]);//注意Vector的插入都是从前面插入的,注意更新it,始终指向vector头    
            }
            exited = false;
        }
        map_attribute_values[state[0][i]] = values;
        values.erase(values.begin(), values.end());
    }
}

//根据具体属性和值来计算熵    
double ComputeEntropy(vector <vector <string> > remain_state, string attribute, string value, bool ifparent) {
    vector<int> count(2, 0);
    unsigned int i, j;
    bool done_flag = false;//哨兵值    
    for (j = 1; j < MAXLEN; j++) {
        if (done_flag) break;
        if (!attribute_row[j].compare(attribute)) {
            for (i = 1; i < remain_state.size(); i++) {
                if ((!ifparent && !remain_state[i][j].compare(value)) || ifparent) {//ifparent记录是否算父节点    
                    if (!remain_state[i][MAXLEN - 1].compare(yes)) {
                        count[0]++;
                    }
                    else count[1]++;
                }
            }
            done_flag = true;
        }
    }
    if (count[0] == 0 || count[1] == 0) return 0;//全部是正实例或者负实例    
                                                 //具体计算熵 根据[+count[0],-count[1]],log2为底通过换底公式换成自然数底数    
    double sum = count[0] + count[1];
    double entropy = -count[0] / sum*log(count[0] / sum) / log(2.0) - count[1] / sum*log(count[1] / sum) / log(2.0);
    return entropy;
}

//计算按照属性attribute划分当前剩余实例的信息增益    
double ComputeGain(vector <vector <string> > remain_state, string attribute) {
    unsigned int j, k, m;
    //首先求不做划分时的熵    
    double parent_entropy = ComputeEntropy(remain_state, attribute, blank, true);
    double children_entropy = 0;
    //然后求做划分后各个值的熵    
    vector<string> values = map_attribute_values[attribute];
    vector<double> ratio;
    vector<int> count_values;
    int tempint;
    for (m = 0; m < values.size(); m++) {
        tempint = 0;
        for (k = 1; k < MAXLEN - 1; k++) {
            if (!attribute_row[k].compare(attribute)) {
                for (j = 1; j < remain_state.size(); j++) {
                    if (!remain_state[j][k].compare(values[m])) {
                        tempint++;
                    }
                }
            }
        }
        count_values.push_back(tempint);
    }

    for (j = 0; j < values.size(); j++) {
        ratio.push_back((double)count_values[j] / (double)(remain_state.size() - 1));
    }
    double temp_entropy;
    for (j = 0; j < values.size(); j++) {
        temp_entropy = ComputeEntropy(remain_state, attribute, values[j], false);
        children_entropy += ratio[j] * temp_entropy;
    }
    return (parent_entropy - children_entropy);
}

int FindAttriNumByName(string attri) {
    for (int i = 0; i < MAXLEN; i++) {
        if (!state[0][i].compare(attri)) return i;
    }
    cerr << "can't find the numth of attribute" << endl;
    return 0;
}

//找出样例中占多数的正/负性    
string MostCommonLabel(vector <vector <string> > remain_state) {
    int p = 0, n = 0;
    for (unsigned i = 0; i < remain_state.size(); i++) {
        if (!remain_state[i][MAXLEN - 1].compare(yes)) p++;
        else n++;
    }
    if (p >= n) return yes;
    else return no;
}

//判断样例是否正负性都为label    
bool AllTheSameLabel(vector <vector <string> > remain_state, string label) {
    int count = 0;
    for (unsigned int i = 0; i < remain_state.size(); i++) {
        if (!remain_state[i][MAXLEN - 1].compare(label)) count++;
    }
    if (count == remain_state.size() - 1) return true;
    else return false;
}

//计算信息增益,DFS构建决策树    
//current_node为当前的节点    
//remain_state为剩余待分类的样例    
//remian_attribute为剩余还没有考虑的属性    
//返回根结点指针    
Node * BulidDecisionTreeDFS(Node * p, vector <vector <string> > remain_state, vector <string> remain_attribute) {

    if (p == NULL)
        p = new Node();
    //先看搜索到树叶的情况    
    if (AllTheSameLabel(remain_state, yes)) {
        p->attribute = yes;
        return p;
    }
    if (AllTheSameLabel(remain_state, no)) {
        p->attribute = no;
        return p;
    }
    if (remain_attribute.size() == 0) {//所有的属性均已经考虑完了,还没有分尽    
        string label = MostCommonLabel(remain_state);
        p->attribute = label;
        return p;
    }

    double max_gain = 0, temp_gain;
    vector <string>::iterator max_it = remain_attribute.begin();
    vector <string>::iterator it1;
    for (it1 = remain_attribute.begin(); it1 != remain_attribute.end(); it1++) {
        temp_gain = ComputeGain(remain_state, (*it1));
        if (temp_gain > max_gain) {
            max_gain = temp_gain;
            max_it = it1;
        }
    }
    //下面根据max_it指向的属性来划分当前样例,更新样例集和属性集    
    vector <string> new_attribute;
    vector <vector <string> > new_state;
    for (vector <string>::iterator it2 = remain_attribute.begin(); it2 < remain_attribute.end(); it2++) {
        if ((*it2).compare(*max_it))
            new_attribute.push_back(*it2);
    }
    //确定了最佳划分属性,注意保存    
    p->attribute = *max_it;
    vector <string> values = map_attribute_values[*max_it];
    int attribue_num = FindAttriNumByName(*max_it);
    new_state.push_back(attribute_row);
    for (vector <string>::iterator it3 = values.begin(); it3 < values.end(); it3++) {//属性对应的取值。
        for (unsigned int i = 1; i < remain_state.size(); i++) {
            if (!remain_state[i][attribue_num].compare(*it3)) {
                new_state.push_back(remain_state[i]);
            }
        }
        Node * new_node = new Node();
        new_node->arrived_value = *it3;
        if (new_state.size() == 0) {//表示当前没有这个分支的样例,当前的new_node为叶子节点    
            new_node->attribute = MostCommonLabel(remain_state);
        }
        else
            BulidDecisionTreeDFS(new_node, new_state, new_attribute);
        //递归函数返回时即回溯时需要1 将新结点加入父节点孩子容器 2清除new_state容器    
        p->childs.push_back(new_node);
        new_state.erase(new_state.begin() + 1, new_state.end());//注意先清空new_state中的前一个取值的样例,准备遍历下一个取值样例    
    }
    return p;
}

void split(string &s, vector<string>& item) {
    int begin = 0, end = 0;
    for (int i = 0; i < s.size(); i++) {
        if (s[i] == ' ') {
            end = i;
            item.push_back(s.substr(begin, end - begin));
            begin = end + 1;
        }
    }
    item.push_back(s.substr(begin, s.size() - begin + 1));
}

void Input() {//读取训练数据
    ifstream in;
    in.open("D://machineLearning/DT/train.txt");
    string s;
    while (getline(in, s)) {
        vector<string> item;
        split(s, item);
        state.push_back(item);
    }
    for (int j = 0; j < MAXLEN; j++) {
        attribute_row.push_back(state[0][j]);
    }
    in.close();

}

void Input2() {//读取测试数据。
    ifstream in;
    in.open("D://machineLearning/DT/test.txt");
    string s;
    while (getline(in, s)) {
        vector<string> item;
        split(s, item);
        testdata.push_back(item);
    }
    in.close();
}

void PrintTree(Node *p, int depth) {
    for (int i = 0; i < depth; i++) cout << '\t';//按照树的深度先输出tab    
    if (!p->arrived_value.empty()) {
        cout << p->arrived_value << endl;
        for (int i = 0; i < depth + 1; i++) cout << '\t';//按照树的深度先输出tab    
    }
    cout << p->attribute << endl;
    for (vector::iterator it = p->childs.begin(); it != p->childs.end(); it++) {
        PrintTree(*it, depth + 1);
    }
}

int findAttribute(string attribute) {
    for (int i = 0; i < attribute_row.size(); i++) {
        if (attribute == attribute_row[i])
            return i;
    }
    return -1;
}

string Test(Node *p, vector<string> &testdata) {
    Node *pnode = p;
    string result;
    int index;
    while (p->attribute!="") {
        index = findAttribute(p->attribute);
        if (index != -1) {
            string value = testdata[index];
            for (auto child : p->childs) {
                if (child->arrived_value == value) {
                    p = child;
                }
            }
        }
        else {
            result = p->attribute;
            break;
        }
    }
    return result;
}


void FreeTree(Node *p) {
    if (p == NULL)
        return;
    for (vector::iterator it = p->childs.begin(); it != p->childs.end(); it++) {
        FreeTree(*it);
    }
    delete p;
    tree_size++;
}

int main() {
    Input();
    vector <string> remain_attribute;
    string outlook("outlook");
    string Temperature("temperature");
    string Humidity("humidity");
    string Wind("wind");
    remain_attribute.push_back(outlook);
    remain_attribute.push_back(Temperature);
    remain_attribute.push_back(Humidity);
    remain_attribute.push_back(Wind);
    vector <vector <string> > remain_state;
    for (unsigned int i = 0; i < state.size(); i++) {
        remain_state.push_back(state[i]);
    }
    ComputeMapFrom2DVector();
    //生成树
    root = BulidDecisionTreeDFS(root, remain_state, remain_attribute);
    cout << "the decision tree is :" << endl;   
    PrintTree(root, 0);

    //测试数据
    Input2();
    for (auto test : testdata) {
        for (string s : test) {
            cout << s << " ";
        }
        cout << Test(root, test) << endl;
    }

    FreeTree(root);
    cout << endl;
    cout << "tree_size:" << tree_size << endl;
    getchar();
    return 0;
}

训练数据内容
day outlook temperature humidity wind result
1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rain mild high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes
10 rain mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rain mild high true no

测试数据内容
8 sunny mild high false
9 sunny cool normal false
10 rain mild normal false
11 sunny mild normal true
12 overcast mild high true
13 overcast hot normal false
14 rain mild high true

注:文件里带前边的标号。
参考链接
http://blog.csdn.net/u013058160/article/details/50396822

你可能感兴趣的:(机器学习)