在本篇博客中一并使用了OpenCV读取摄像头,读取视频等操作,通过光流法,实现目标检测.含义有自己写的代码和官方的代码,实现的方法不尽相同
主要使用如下几个函数:具体使用和注解,看下面代码,
goodFeaturesToTrack
确定图像上的强角点。
cornerSubPix
精确角点的位置。
calcOpticalFlowPyrLK
使用具有金字塔的迭代Lucas-Kanade方法计算稀疏特征集的光流。
#include "opencv/cv.h"
#include "opencv/cxcore.h"
#include "opencv/highgui.h"
#include
using namespace std;
using namespace cv;
/* 全局变量 */
namespace{
const int MAX_CORNERS = 1000;
int WIN_SIZE = 5;
}
/* 文件路径 */
namespace{
// const char* InputVideoPath = "../image/test.mp4";
}
int main()
{
// 读取视频数据
// CvCapture* capture = cvCaptureFromAVI(InputVideoPath);
// 摄像头数据
CvCapture* capture = cvCreateCameraCapture(0);
// 放置视频当前帧的图片
IplImage* imgSrc = cvQueryFrame(capture);
if(!capture){
fprintf(stderr, "Cannot open video!\n");
return -1;
}
// 设置帧的大小
CvSize sizeImg = cvGetSize(imgSrc);
// 灰度图
IplImage* imgGray = cvCreateImage( sizeImg, IPL_DEPTH_8U, 1 );
IplImage* imgCurr = cvCreateImage( sizeImg, IPL_DEPTH_8U, 1 );
// 光流显示
IplImage* imgDisplay = cvCreateImage( sizeImg, IPL_DEPTH_8U, 3 );
IplImage* imgDisplay1 = cvCreateImage( sizeImg, IPL_DEPTH_8U, 3 );
IplImage* imgDisplay2 = cvCreateImage( sizeImg, IPL_DEPTH_8U, 3 );
// 金字塔图像的缓冲区
CvSize sizePyr = cvSize( imgSrc->width + 8, imgSrc->height / 3 );
IplImage* pyrPrev = cvCreateImage( sizePyr, IPL_DEPTH_32F, 1 );
IplImage* pyrCurr = cvCreateImage( sizePyr, IPL_DEPTH_32F, 1 );
CvPoint2D32f* featuresPrev = new CvPoint2D32f[ MAX_CORNERS ];
CvPoint2D32f* featuresCurr = new CvPoint2D32f[ MAX_CORNERS ];
CvSize sizeWin = cvSize( WIN_SIZE, WIN_SIZE );
IplImage* imgEig = cvCreateImage( sizeImg, IPL_DEPTH_32F, 1 );
IplImage* imgTemp = cvCreateImage( sizeImg, IPL_DEPTH_32F, 1 );
// 金字塔卢卡斯-卡纳德 Lucas-Kanade
char featureFound[ MAX_CORNERS ];
float featureErrors[ MAX_CORNERS ];
int cornerCount = MAX_CORNERS;
while(true){
// 得到第一帧
imgSrc = cvQueryFrame(capture);
if(!imgSrc){
break;
}
// 将rgb转换为gray
cvCvtColor(imgSrc, imgGray, CV_BGR2GRAY );
// 显示
cvCopy( imgSrc, imgDisplay );
cvCopy( imgSrc, imgDisplay1 );
cvCopy( imgSrc, imgDisplay2 );
// 得到第二帧,也就是当前帧
imgSrc = cvQueryFrame(capture);// get the second frame
if(!imgSrc){
break;
}
// 得到第二帧(灰度)
cvCvtColor(imgSrc, imgCurr, CV_BGR2GRAY );
// 我需要做的第一件事就是得到特征点,检验第一帧的特征点
cvGoodFeaturesToTrack(
imgGray,//8位或32为浮点型输入图像,单通道
imgEig,//缓存
imgTemp,//缓存
featuresPrev,//保存检测出的角点
&cornerCount,//角点数目最大值,如果实际检测的角点超过此值,则只返回前cornerCount个强角点
0.01,
5.0,
0,
3,
0,
0.04
);
// 绘制特征点
for( int i=0; i < cornerCount; i++ )
{
cvLine(
imgDisplay,
cvPoint(featuresPrev[i].x, featuresPrev[i].y),
cvPoint(featuresPrev[i].x, featuresPrev[i].y),
CV_RGB(255,0,0),
5
);
}
//优化角点的位置,精确角点位置
cvFindCornerSubPix(
imgGray,//输入图像
featuresPrev,//输入角的初始坐标和为输出提供的精细坐标
cornerCount,
sizeWin,
CvSize(-1,-1),//无死区
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)//终止角点细化迭代过程的标准
);
for( int i=0; i < cornerCount; i++ )
{
cvLine(
imgDisplay1,
cvPoint(featuresPrev[i].x, featuresPrev[i].y),
cvPoint(featuresPrev[i].x, featuresPrev[i].y),
CV_RGB(255,0,0),
5
);
}
cvCalcOpticalFlowPyrLK(
imgGray,//需要计算光流的前一帧图像
imgCurr,//需要计算的当前帧图像
pyrPrev,//缓存
pyrCurr,//缓存
featuresPrev,
//是前一帧图像中的特征点,这个特征点必须自己去找,
//所以在使用calcOpticalFlowPyrLK()函数时,前面需要有一个找特征点的操作,
//那么一般就是找图像的角点,就是一个像素点与周围像素点都不同的那个点,
//这个角点特征点的寻找,opencv也提供了一个函数:goodFeatureToTrack(),就是前面用到的,也有其他寻找特征点的方式
featuresCurr,
//计算出来的特征点在第二帧中的新位置,然后输出,特征点的新位置可能变化了,
//也可能没有变化,然后这个状态存放在featureFound
cornerCount,
sizeWin,
5,
featureFound,//变化了则为1,没有变化则为0
featureErrors,//这是一个输出矩阵,存的是新旧两个特征点位置的误差
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.3),
0
);
// 显示
for(int i=0; iif( featureFound == 0 || featureErrors[i] > 550 ){
continue;
}
CvPoint p0 = cvPoint(
cvRound( featuresPrev[i].x ),
cvRound( featuresPrev[i].y )
);
CvPoint p1 = cvPoint(
cvRound( featuresCurr[i].x ),
cvRound( featuresCurr[i].y )
);
cvLine(imgDisplay2, p0, p1, CV_RGB(255,0,0), 2 );
}
cvNamedWindow("goodFeatureToTrack", 0 );
cvShowImage("goodFeatureToTrack",imgDisplay);
cvNamedWindow("FindCornerSubPix", 0 );
cvShowImage("FindCornerSubPix",imgDisplay1);
cvNamedWindow("CalcOpticalFlowPyrLK", 0 );
cvShowImage("CalcOpticalFlowPyrLK",imgDisplay2);
cvWaitKey(5);
}
cvWaitKey(0);
return 0;
}
goodFeatureToTrack效果图
FindCornerSubPix效果图
CalcOpticalFlowPyrLK效果图
官方有一个LKdemo效果一致,挺有趣的
运行时会有帮助信息,按键ESC退出程序,按键r自动初始化特征点,按键c删除所有点,按键n切换到夜间模式
初始化特征点效果
夜间模式
官方链接LKdemo
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include
#include
using namespace cv;
using namespace std;
static void help()
{
// print a welcome message, and the OpenCV version
cout << "\nThis is a demo of Lukas-Kanade optical flow lkdemo(),\n"
"Using OpenCV version " << CV_VERSION << endl;
cout << "\nIt uses camera by default, but you can provide a path to video as an argument.\n";
cout << "\nHot keys: \n"
"\tESC - quit the program\n"
"\tr - auto-initialize tracking\n"
"\tc - delete all the points\n"
"\tn - switch the \"night\" mode on/off\n"
"To add/remove a feature point click it\n" << endl;
}
Point2f point;
bool addRemovePt = false;
static void onMouse( int event, int x, int y, int /*flags*/, void* /*param*/ )
{
if( event == EVENT_LBUTTONDOWN )
{
point = Point2f((float)x, (float)y);
addRemovePt = true;
}
}
int main( int argc, char** argv )
{
VideoCapture cap;
TermCriteria termcrit(TermCriteria::COUNT|TermCriteria::EPS,20,0.03);
Size subPixWinSize(10,10), winSize(31,31);
const int MAX_COUNT = 500;
bool needToInit = false;
bool nightMode = false;
help();
cv::CommandLineParser parser(argc, argv, "{@input|0|}");
string input = parser.get<string>("@input");
if( input.size() == 1 && isdigit(input[0]) )
cap.open(input[0] - '0');
else
cap.open(input);
if( !cap.isOpened() )
{
cout << "Could not initialize capturing...\n";
return 0;
}
namedWindow( "LK Demo", 1 );
setMouseCallback( "LK Demo", onMouse, 0 );
Mat gray, prevGray, image, frame;
vector points[2];
for(;;)
{
cap >> frame;
if( frame.empty() )
break;
frame.copyTo(image);
cvtColor(image, gray, COLOR_BGR2GRAY);
if( nightMode )
image = Scalar::all(0);
if( needToInit )
{
// automatic initialization
goodFeaturesToTrack(gray, points[1], MAX_COUNT, 0.01, 10, Mat(), 3, 3, 0, 0.04);
cornerSubPix(gray, points[1], subPixWinSize, Size(-1,-1), termcrit);
addRemovePt = false;
}
else if( !points[0].empty() )
{
vector status;
vector<float> err;
if(prevGray.empty())
gray.copyTo(prevGray);
calcOpticalFlowPyrLK(prevGray, gray, points[0], points[1], status, err, winSize,
3, termcrit, 0, 0.001);
size_t i, k;
for( i = k = 0; i < points[1].size(); i++ )
{
if( addRemovePt )
{
if( norm(point - points[1][i]) <= 5 )
{
addRemovePt = false;
continue;
}
}
if( !status[i] )
continue;
points[1][k++] = points[1][i];
circle( image, points[1][i], 3, Scalar(0,255,0), -1, 8);
}
points[1].resize(k);
}
if( addRemovePt && points[1].size() < (size_t)MAX_COUNT )
{
vector tmp;
tmp.push_back(point);
cornerSubPix( gray, tmp, winSize, Size(-1,-1), termcrit);
points[1].push_back(tmp[0]);
addRemovePt = false;
}
needToInit = false;
imshow("LK Demo", image);
char c = (char)waitKey(10);
if( c == 27 )
break;
switch( c )
{
case 'r':
needToInit = true;
break;
case 'c':
points[0].clear();
points[1].clear();
break;
case 'n':
nightMode = !nightMode;
break;
}
std::swap(points[1], points[0]);
cv::swap(prevGray, gray);
}
return 0;
}
参考链接:
https://blog.csdn.net/leixiaohua1020/article/details/15029187
https://blog.csdn.net/on2way/article/details/48954159
https://github.com/opencv/opencv/blob/master/samples/cpp/lkdemo.cpp
https://docs.opencv.org/2.4.13/index.html
https://blog.csdn.net/crzy_sparrow/article/details/7407604