Python递归实现全排列

排列:从n个元素中任取m个元素,并按照一定的顺序进行排列,称为排列;
全排列:当n==m时,称为全排列;

比如:集合{ 1,2,3}的全排列为:
{ 1 2 3} 
{ 1 3 2 }
{ 2 1 3 }
{ 2 3 1 }
{ 3 2 1 }
{ 3 1 2 }

递归思想:
取出数组中第一个元素放到最后,即a[1]与a[n]交换,然后递归求a[n-1]的全排列

1)如果数组只有一个元素n=1,a={1} 则全排列就是{1}
2)如果数组有两个元素n=2,a={1,2} 则全排列是:
{2,1}--a[1]与a[2]交换。交换后求a[2-1]={2}的全排列,归结到1)
{1,2}--a[2]与a[2]交换。交换后求a[2-1]={1}的全排列,归结到1)
3)如果数组有三个元素n=3,a={1,2,3} 则全排列是
{{2,3},1}--a[1]与a[3]交换。后求a[3-1]={2,3}的全排列,归结到2)
{{1,3},2)--a[2]与a[3]交换。后求a[3-1]={1,3}的全排列,归结到2)
{{1,2},3)--a[3]与a[3]交换。后求a[3-1]={1,2}的全排列,归结到2)
...
依此类推。
利用python实现全排列的具体代码perm.py如下:
COUNT=0
def perm(n,begin,end):
    global COUNT
    if begin>=end:
        print n
        COUNT +=1
    else:
        i=begin
        for num in range(begin,end):
            n[num],n[i]=n[i],n[num]
            perm(n,begin+1,end)
            n[num],n[i]=n[i],n[num]

n=[1,2,3,4]
perm(n,0,len(n))
print COUNT
最后输出的结果如下:
======================== RESTART: D:/Python27/perm.py ========================
[1, 2, 3, 4]
[1, 2, 4, 3]
[1, 3, 2, 4]
[1, 3, 4, 2]
[1, 4, 3, 2]
[1, 4, 2, 3]
[2, 1, 3, 4]
[2, 1, 4, 3]
[2, 3, 1, 4]
[2, 3, 4, 1]
[2, 4, 3, 1]
[2, 4, 1, 3]
[3, 2, 1, 4]
[3, 2, 4, 1]
[3, 1, 2, 4]
[3, 1, 4, 2]
[3, 4, 1, 2]
[3, 4, 2, 1]
[4, 2, 3, 1]
[4, 2, 1, 3]
[4, 3, 2, 1]
[4, 3, 1, 2]
[4, 1, 3, 2]
[4, 1, 2, 3]
24
>>> 




你可能感兴趣的:(Data,Structure,&,Algorithm)